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Abstract 
 

USING GENETIC INFORMATION IN RISK PREDICTION FOR ALCOHOL DEPENDENCE 
 
By Jia Yan, B.A. 
 
A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 
Philosophy in Human and Molecular Genetics and Master of Science in Genetic Counseling at 
Virginia Commonwealth University. 
 

Virginia Commonwealth University, 2012. 
 

Major Director: Danielle M. Dick, PhD 
Associate Professor of Psychiatry, Psychology, and Human and Molecular Genetics  

 

Family-based and genome-wide association studies (GWAS) of alcohol dependence (AD) have 

reported numerous associated variants. The clinical validity of these variants for predicting AD 

compared to family history has not yet been reported. These studies aim to explore the aggregate 

impact of multiple genetic variants with small effect sizes on risk prediction in order to provide a 

clinical interpretation of genetic contributions to AD. Data simulations showed that given AD’s 

prevalence and heritability, a risk prediction model incorporating all genetic contributions would 

have an area under the receiver operating characteristic curve (AUC) approaching 0.80, which is 

often a target AUC for screening. Adding additional environmental factors could increase the 

AUC to 0.95. Using the Collaborative Study on the Genetics of Alcoholism (COGA) and the 

Study of Addiction: Genes and Environment (SAGE) GWAS samples, we used several different 

sources to capture genetic information associated with AD in discovery samples, and then tested 

genetic sum scores created based on this information for predictive accuracy in validation 
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samples. Scores were assessed separately for single nucleotide polymorphisms (SNPs) associated 

in candidate gene studies and in GWAS analyses. Candidate gene sum scores did not exhibit 

significant predictive accuracy, but SNPs meeting less stringent p-value thresholds in GWAS 

analyses did, ranging from mean estimates of 0.549 for SNPs meeting p<0.01 to 0.565 for SNPs 

meeting p<0.50. Variants associated with subtypes of AD showed that there is similarly modest 

and significant predictive ability for an externalizing subtype. Scores created based on all 

individual SNP effects in aggregate across the entire genome accounted for 0.46%-0.57% of the 

variance in AD symptom count, and have AUCs of 0.527 to 0.559. Additional covariates and 

environmental factors that are correlated with AD increased the AUC to 0.865. Family history 

was a better classifier of case-control status than genetic sum scores, with an AUC of 0.686 in 

COGA and 0.614 in SAGE. This project suggests that SNPs from candidate gene studies and 

genome-wide association studies currently have limited clinical validity, but there is potential for 

enhanced predictive ability with better detection of genetic factors contributing to AD.  
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Chapter 1: Introduction 
 
 
 

Background and significance 

Alcohol dependence (AD) is a complex psychiatric condition that is influenced by both 

genetic and environmental factors (Stacey et al., 2009). It affects 4-5% of individuals at 

any given time in the United States and accounts for 10% of disability-adjusted life years 

lost (Hasin et al., 2007; Rehm et al., 2009). It results in numerous unintentional and 

intentional injuries and impacts other diseases such as maternal and perinatal disorders, 

liver cirrhosis, cancer, diabetes mellitus, cognitive impairments, and cardiovascular 

diseases (Rehm et al., 2009; Stavro et al., 2012). The World Health Organization 

estimated that harmful alcohol use results in 20-30% of liver cirrhosis, liver and 

esophageal cancer, epilepsy, homicide, and motor vehicle accidents worldwide (World 

Health Organization, 2004). The substantial contribution of AD to the global burden of 

disease makes efforts to identify differential susceptibility to AD an important public 

health need (Rehm et al., 2009). Based on twin studies, AD has an estimated heritability 

of around 50-60% for both men and women (Heath et al., 1997; Kendler et al., 1992; 

Prescott and Kendler, 1999). Gene-finding studies have reported numerous genetic loci 

associated with alcohol dependence. The existence of public interest in genetic 

counseling and genetic testing for alcohol dependence stresses the importance of 

coupling gene-finding studies with the evaluation of predictive accuracy and clinical 
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utility of genetic information for alcohol dependence (Gamm et al., 2004b; Khoury et al., 

2009). This study explores the clinical validity of using information about specific 

genetic variants, family history, and additional factors such as marital status, religious 

attendance, educational attainment, and income, in risk prediction for alcohol 

dependence. 

Alcohol dependence is defined by the DSM-IV-TR as three or more of the 

following symptoms over a twelve-month period:  tolerance, withdrawal, excessive 

consumption, inability to reduce alcohol use, spending a great deal of time on obtainment 

of alcohol, giving up or reducing important social, occupational, or recreational activities 

due to alcohol use, and continued use despite adverse physical or psychological 

consequences (4th ed.; DSM–IV; American Psychiatric Association, 1994). Development 

of AD involves initiation of use and a process by which compulsive behavior arises 

following controlled drinking initiation. Addiction has been described as encompassing 

three stages characterized by aspects of impulsivity and compulsion: “binge/intoxication”, 

“withdrawal/negative affect”, and “preoccupation/anticipation”, or craving (Koob and 

Volkow, 2010). AD is a prevalent disorder in the United States. According to the 

National Institute on Alcohol Abuse and Alcoholism (NIAAA)’s latest National 

Epidemiologic Survey on Alcohol and Related Conditions (NESARC) for Alcohol Use 

and Alcohol Use Disorders in 2001-2002, the 12-month prevalence of alcohol 

dependence in the United States was 3.81%, with a prevalence rate of 5.42% in males and 

2.32% in females (Grant et al., 2004). The lifetime prevalence of alcohol dependence has 

been reported to range from 5.4% in the National Comorbidity Survey (NCS) (Kessler et 

al., 2005) to 12.5% in NESARC, with alcohol use disorders twice as common in men as 
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they are in women (Hasin et al., 2007). A study from the National Longitudinal Alcohol 

Epidemiological survey showed that of the general population, approximately 40% 

reported having some history of alcoholism in their family and approximately 7-9% of 

the population reported having both first and second-degree relatives with AD  (Gamm et 

al., 2004a; Grant, 2000) . The World Health Organization estimates that more than 200 

million people in the world are affected with AD (Ginter and Simko, 2009). 

 

Genetics of alcohol dependence 
 
Human linkage and association studies and animal studies have shown numerous genetic 

variants and key pathways associated with AD and other substance use disorders, with 

multiple genetic contributions of small effect contributing to risk (Gelernter and Kranzler, 

2009; Kalsi et al., 2009). Many studies of the genetics of alcohol dependence have 

revealed phenotypic and etiological complexities, finding genetic influences across a 

variety of alcohol phenotypes, including alcohol dependence that is co-morbid with other 

drug dependence and externalizing and internalizing disorders such as conduct disorder, 

adult antisocial personality disorder, and major depressive disorder, and intermediate 

phenotypes and alcohol-related traits including impulsivity, sensation-seeking, and 

behavioral disinhibition. Studies show unique and shared genetic etiology for these 

comorbid phenotypes, as well as genetic variants that contribute to intermediate 

phenotypes and alcohol-related traits, which could in turn influence risk for dependence 

(Kendler et al., 2012; Dick et al., 2008a; Kertes et al., 2011; Knopik et al., 2004; Buscemi 

and Turchi, 2011).  

 Among the first studies investigating the etiology of alcohol dependence were 
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family studies that reported evidence for familial transmission of AD (Merikangas, 1990; 

Merikangas et al., 1985; Radouco-Thomas et al., 1979). Because family members can 

share both genetic and environmental factors, intergenerational family studies of AD 

cannot distinguish clearly between the two. Twin studies, however, are genetically 

informative in delineating the etiological contributions of genetic and environmental 

factors. These studies compare the phenotypic similarities and differences between 

monozygotic twins, who share 100% of their genetic variation, and dizygotic twins, who 

share on average 50% of their genetic variation. Both types of twin pairs also have a 

common shared environment as well as unique environmental factors specific to each 

twin. These studies have found that about 50-60% of the variability in alcohol 

dependence is attributable to additive genetic factors, and that the rest of the variability in 

AD is due primarily to unique unshared environmental factors (Kendler et al., 1992; 

Heath et al., 1997; Prescott and Kendler, 1999).  

 The search for specific genetic loci contributing to alcohol dependence began with 

linkage studies, which investigate the co-segregation of genetic markers with a disease or 

trait within a family. Linkage studies assess the occurrence of co-segregation more than 

expected by Mendel’s Law of Independent Assortment, with the assumption that 

segregation between a genetic marker and disease status occurs when the marker has a 

close physical distance to the disease locus and therefore lower likelihood of separation 

from the disease locus during meiotic recombination. Because the chromosomal location 

of genetic markers used in linkage studies are known, linkage study results help localize 

disease regions (White et al., 1989; Botstein et al., 1980). Studies of large, densely 

affected families and sibling pairs with alcohol dependence have uncovered regions 
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across multiple chromosomes that showed evidence for linkage. Genome-wide linkage 

studies in the Collaborative Study on the Genetics of Alcoholism (COGA) sample have 

found linkage of alcohol dependence diagnoses to chromosome 4q near the ADH gene 

cluster, and also on chromosomes, 1, 2, 3, 7, and 8 (Reich et al., 1998; Nurnberger et al., 

2001; Schuckit et al., 2001; Foroud et al., 2000). A study by the National Institute on 

Alcohol Abuse and Alcoholism (NIAAA) identified a region on chromosome 11 and also 

a region on chromosome 4q in a sample from a Southwest American Indian tribe, near 

the GABRB1 gene (Long et al., 1998). The 4q region was further supported in the Irish 

Affected Sib Pair Study of Alcohol Dependence (IASPSAD) sample (Prescott et al., 

2006).  

 Linkage studies uncover chromosomal regions at low resolutions, on the order of 1 

centimorgan (cM) or roughly 1 megabase (Mb), and are more suited for diseases of 

Mendelian etiology, which have single-gene contributions of larger effect sizes. Follow-

up studies fine-mapping chromosomal regions using association analyses are necessary to 

discover specific genes (Boehnke, 1994; Ciaranello and Ciaranello, 1991). Association 

analyses, on the other hand, are designed to discover specific alleles that are correlated 

with disease status. Association studies are based on the observation that patterns of 

linkage disequilibrium (LD), or correlations among alleles more than expected by chance, 

are maintained across the genome. These correlations exist often because of close 

physical distance, which reduces the likelihood that recombination events between the 

two loci occur across generations. A map of the LD structure of the human genome has 

allowed for LD-based tagging of the entire genome using common single nucleotide 

polymorphisms (SNPs). Haplotype blocks consisting of groups of alleles that are 
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correlated and inherited together can be captured by a reduced number of informative 

SNPs. These SNPs have been used to test for associations with disease status, with the 

idea that SNPs that are associated with disease status are either in LD with causal loci 

(indirect association), or are themselves causative (direct association) (International 

HapMap Consortium, 2003) .  

 Candidate gene studies of alcohol dependence have investigated the correlation 

between specific genetic variants and alcohol dependence. Candidate genes are typically 

selected as positional candidates, or genes that are located in or near linkage regions for 

alcohol-related phenotypes, and/or functional candidates, which are genes involved in 

specific biological pathways that are hypothesized to influence risk for addiction 

(Gelernter and Kranzler, 2009; Zhu and Zhao, 2007). Association methods include 

family-based association, which assesses for increased frequency of transmission of 

specific alleles from parents to affected offspring using the transmission disequilibrium 

test and population-based association, which tests for allele frequency differences 

between cases and matched-controls for a disorder using regression methods (Buscemi 

and Turchi, 2011). Many candidate genes have been found to be associated with AD. A 

number of promising candidates that have been replicated in independent samples have 

emerged. Some of the candidate genes and pathways that are currently thought to be 

involved in AD include the following: 

 

Alcohol Metabolism 

The most robustly replicated candidate genes with the largest estimated effect sizes 

encode enzymes that play primary roles in alcohol metabolism:  alcohol and aldehyde 
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dehydrogenases. The breakdown of ethanol occurs primarily in the liver, the first step of 

which involves oxidation of ethanol to acetaldehyde, a reaction that is catalyzed by 

alcohol dehydrogenases (ADH). The second step is catalyzed by aldehyde 

dehydrogenases (ALDH), which results in oxidation of acetaldehyde to acetate. The 

accumulation of acetaldehyde leads to adverse physiological reactions to alcohol, such as 

nausea, flushing, and tachycardia (Edenberg, 2007a). Variants of the ADH and ALDH 

genes that confer differences in the elimination of alcohol and the accumulation of 

acetaldehyde – and subsequently symptoms following alcohol consumption – have been 

found to influence risk for alcohol dependence (Strat et al., 2008). Both coding and 

noncoding variations have been associated with AD, with allele frequencies varying 

across populations of different ancestry.  

 The ALDH2*2 Glu504Lys allele results in nearly inactive ALDH2, and therefore 

lack of conversion of acetaldehyde to acetate, resulting in nausea, tachycardia, and in 

particular, a severe flushing response following alcohol intake (Edenberg, 2007a). 

Carriers of this allele have been found to have a significantly decreased risk for AD 

(heterozygotes in East Asian populations have been found to have a fivefold reduction in 

risk for AD) (Mathews et al., 2012; Chen et al., 1999). The frequency of ALDH2*2 is 

common in East Asian populations, but rare in European and African populations (Oota 

et al., 2004). Variants in the ALDH1A1 gene have also been associated with AD and 

drinking behavior in different populations, including American Indian, Finnish, and East 

Indian samples (Ehlers et al., 2004; Lind et al., 2008; Moore et al., 2007). ADH1B*2 and 

ADH1C*1, which encode enzymes that have greater activity in the conversion of alcohol 

into acetaldehyde, have been shown to have protective effects against AD in East Asian 
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populations, perhaps due to the increased feelings of nausea resulting from toxicity of a 

larger quantity of acetaldehyde (Choi et al., 2005; Crabb et al., 1989; Crabb et al., 1993; 

Edenberg, 2007b; Li et al., 2011). ADH1B*2 has also been found to have a protective 

effect among individuals of Jewish descent (Hasin et al., 2002a; Hasin et al., 2002b) and 

in a group of Mexican American men in the United States (Konishi et al., 2004). The 

variant has been associated in African American individuals, though it has a smaller 

frequency in the population (Whitfield, 2002). Studies of the seven ADH genes in 

European Americans have found association of AHD1B (Whitfield, 2002) and of ADH4 

variants with AD (Edenberg et al., 2006; Luo et al., 2005b; Edenberg, 2007a; Guindalini 

et al., 2005). More recently, despite the substantially lower frequency of the ADH1B*2 

allele in European American populations, ADH1B*2 has been found also to have a 

protective effect on alcohol dependence in European Americans and African Americans 

(Bierut et al., 2012). In a German sample, a genome-wide significant finding was found 

for a SNP between the ADH1B and ADH1C genes that is in LD with the functional 

ADH1C Arg272Gln variant, which has been previously associated with alcohol 

consumption (Frank et al., 2012; Macgregor et al., 2009). Convergent evidence from 

linkage, candidate gene, and genome-wide association studies, coupled with knowledge 

of the biological function of ADHs and animal and expression studies, support the 

importance of ADH genes for AD (Ehlers et al., 2010; Chen et al., 2005).   

 

Reward Pathways 

Reward pathways have been found to be involved in alcohol initiation, tolerance, 

preference, consumption, abuse, and dependence (Strat et al., 2008). Genes that play a 
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role in neurotransmitter systems, including ones involving dopamine, gamma-

aminobutyric acid (GABA), opioids, glutamate, and serotonin, have been key candidate 

genes for AD (Palmer et al., 2012).  

 GABA, the major inhibitory neurotransmitter in the central nervous system, has 

been implicated in risk for AD. Variants in the GABA inhibitory pathway have been 

associated with AD across multiple samples, particularly for the GABAA receptor, 

GABRA2. In the COGA high-density family sample with multiple first-degree relatives 

diagnosed with AD, Edenberg et al. found evidence for association of multiple SNPs in 

the GABRA2 gene with alcohol dependence and increased power in the beta frequency 

band measured by electroencephalography, which is an endophenotype for AD 

(Edenberg et al., 2004). This association has been replicated in several additional studies 

(Covault et al., 2004; Lappalainen et al., 2005; Drgon et al., 2006; Fehr et al., 2006; 

Soyka et al., 2008; Enoch et al., 2006; Bierut et al., 2010). The lack of association 

between GABRA2 and AD has also been reported (Matthews et al., 2007). This non-

replication has been attributed to a difference in phenotype; the sample in which the 

negative finding was seen had minimal comorbidity with other drug dependence and 

psychiatric phenotypes (Matthews et al., 2007). In fact, further study showed that 

GABRA2 was associated with AD that is comorbid with other drug dependence (Agrawal 

et al., 2006). GABRG3, GABRA1, GABRA6, and GABRB1 are several additional GABA 

receptor genes reported to be associated with AD (Dick et al., 2004; Dick et al., 2006b; 

Noble et al., 1998; Song et al., 2003). 

 Genes encoding dopamine receptors have been associated with AD, including the 

dopamine D2 receptor, DRD2 and the dopamine D4 receptor gene, DRD4. An increased 
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frequency of the DRD2 A1 allele of the Taq1A restriction fragment length polymorphism 

has been associated with AD. There have been a number of studies investigating this 

association, with mixed results. The first reports of association showed that the Taq1A1 

restriction fragment length polymorphism was associated with AD in a sample of 

postmortem brain tissue in severe alcoholics and controls (Blum et al., 1990; Blum et al., 

1991). Since then, there have been a number of studies that replicated this finding in 

independent associations with AD (Comings et al., 1994; Blum et al., 1990; Blum et al., 

1991; Noble et al., 1991; Amadeo et al., 1993; Amadeo et al., 2000; Foley et al., 2004; 

Hietala et al., 1997; Ishiguro et al., 1998; Konishi et al., 2004; Kono et al., 1997). 

However, there have also been many failures to replicate (Arinami et al., 1993; Bolos et 

al., 1990; Cook et al., 1992; Chen et al., 2001; Cruz et al., 1995; Edenberg et al., 1998; 

Gelernter and Kranzler, 1999; Gelernter et al., 1991; Goldman et al., 1992; Lee et al., 

1999; Lobos and Todd, 1998; Lu et al., 1996; Sander et al., 1995; Sander et al., 1999; 

Suarez et al., 1994; Turner et al., 1992). The discordance across studies has been 

attributed to differences in phenotypic severity, co-occurrence of other phenotypes such 

as polysubstance abuse and impulsive and compulsive behaviors  - coined “reward 

deficiency syndrome” by Blum et al. (Blum et al., 1996), and population stratification 

(Dick et al., 2007d). A later study found that the Taq1A polymorphism that had been 

thought to be located in the DRD2 gene was actually located 10 kb downstream in the 

ANKK1 gene (Neville et al., 2004). A comprehensive study of SNPs across both DRD2 

and ANKK1 found associations for SNPs in both genes, with stronger evidence for SNPs 

in the 5’ region of ANKK1, particularly for AD with medical complications (Dick et al., 

2007d).  
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 Several genes related to serotonin (5-hydroxytryptamine, 5-HT) have been 

suggested to play a role in AD. Specifically, a functional insertion-deletion variant in the 

serotonin transporter protein (5-HTT)-linked promoter region (5-HTTLPR) affects 

regulation of 5-HT levels and has been associated with AD; however, results have been 

controversial, with a large number of both positive and negative findings (reviewed in 

Dick and Foroud, 2003). A meta-analysis of 17 studies, comprised of 3,489 alcoholics 

and 2,325 controls, showed that the short (S) allele was associated with AD, with an odds 

ratio of 1.18 (Feinn et al., 2005). A gain-of-function 5-HT3 receptor gene (HTR3B) 

variant has also been associated with alcohol dependence in a treatment-seeking sample 

of individuals of African descent (Enoch et al., 2011).  

 The muscarinic acetylcholine receptor M2 (CHRM2) has been associated with AD 

and the endophenotype event-related oscillations (EROs) (Wang et al., 2004). Evidence 

for this association has been seen in other independent samples (Luo et al., 2005a; 

Kendler et al., 2011). Further study has suggested that CHRM2 is particularly important 

in AD that is comorbid with other drug dependence (Dick et al., 2007a) and associated 

with the severity of alcohol dependence (Jung et al., 2011). It has also been implicated in 

risk during adolescence, showing an association with adolescent substance use and 

behavioral disinhibition (Hendershot et al., 2011) and interaction with parental 

monitoring in risk for externalizing (Dick et al., 2011). Variants in the gene have also 

been associated with nicotine dependence (Mobascher et al., 2010), major depressive 

disorder (Wang et al., 2004) and IQ (Dick et al., 2007c). 

 

Genome-wide association studies of alcohol dependence 
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More recently, a number of genome-wide association studies (GWAS) have been 

performed for alcohol dependence and alcohol-related phenotypes. GWA-studies, which 

assess common markers across the genome for association with a common disorder, are 

an a priori approach to gene finding (Visscher et al., 2012). Compared with a linkage 

study, which is more suited to detecting loci with larger effects sizes, an association study 

is a more powerful method that requires fewer markers and a smaller sample size to 

detect common variants of small effect for diseases. For example, in a nonparametric 

linkage analysis of affected sib pairs, an allele with moderate frequency (0.10-0.50) and 

modest genotypic relative risk (GRR) of 1.5 would have a probability of allele sharing 

between siblings of only 50.5% - 51%, which is close to the null hypothesis of 0.50. In an 

association study, however, the degree of overtransmission from heterozygous parents to 

affected offspring for an allele of this effect would be around 60%. The number of 

families required to detect an allele with a GRR of 1.5 effect using linkage analysis 

would be on the order of 17,000-67,000, compared with only 949-2218 for an association 

study to detect the same effect (Risch and Merikangas, 1996).  

Genome-wide association studies for AD have supported previous candidate gene 

studies, as well as reported many new genes and pathways in risk for alcohol-related 

phenotypes (Treutlein and Rietschel, 2011b; Treutlein et al., 2009; Frank et al., 2012; 

Bierut et al., 2010; Edenberg et al., 2010; Agrawal et al., 2011; Heath et al., 2011; Lind et 

al., 2010; Schumann et al., 2011; Wang et al., 2012; Wang et al., 2011; Zuo et al., 2012; 

Kendler et al., 2011; Zuo et al., 2011). Although many of the reported genome-wide 

association studies to date have reported variants that did not meet the genome-wide 

significance threshold of p < 5x10-8, many have reported variants that were associated 
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with low p-values (p < 1x10-5). Additional details about specific AD GWAS are 

summarized in Chapter 4. Briefly, several results from AD GWAS reports include the 

following:  two correlated SNPs in the 3’ flanking region of the peroxisomal trans-2-

enoyl-CoA reductase gene (PECR) (Treutlein et al., 2009); a group of chromosome 11 

genes (SLC22A18, PHLDA2, NAP1L4, SNORA54, CARS, and OSBPL5) (Edenberg et al., 

2010); the semaphorin 3E gene (SEMA3E) (Lind et al., 2010); MARK1, which is involved 

in phosphorylation of microtubule-associated proteins (Lind et al., 2010); DDX6, which 

encodes a putative RNA helicase, and KIAA1409, which is thought to be part of a sodium 

channel complex (Lind et al., 2010); The KIAA0040 gene was associated with AD in both 

Zuo et al.’s study (2012) and Wang et al.’s meta-analysis (2011); THSD7B, NRD1, and 

PKNOX2 in Wang et al. (2011). Studies of quantitative traits such as alcohol 

consumption have identified a genome-wide significant association with the AUTS2 gene 

(Schumann et al., 2011) and evidence of association for the TMEM108 and ANKS1A 

genes (Heath et al., 2011). In a study of an alcohol factor score, Kendler et al. (2011) 

found the most significant SNP to be KCNMA1, AKAP9, and PIGG in the EA sample and 

CEACAM6, KCNQ5, SLC35B4, and MGLL in the AA sample, and found support for 

previously associated candidate genes for ADH1C, NFKB1, and ANKK1 in the EA 

sample and ADH5, POMC, and CHRM2 in the AA sample (Kendler et al., 2011). 

 

Environmental factors influencing risk for alcohol dependence 

Additional factors that contribute to AD have been implicated in numerous studies. A 

study investigating risk factors predicting problem drinking in a sample of 30-year old 

Danish men identified low birth weight, number of life crises in childhood, ratings of 
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childhood unhappiness and antisocial personality disorder as powerful independent 

predictors of problem drinking, accounting for 46% of the variance in problem drinking 

(Knop et al., 2003). Childhood maltreatment has also been implicated as an 

environmental risk for substance use disorders such as AD implicated in numerous 

studies, including physical abuse, neglect, and a particularly specific risk for substance 

use disorders in cases of child sexual abuse (Clark and Winters, 2002; Dinwiddie et al., 

2000; Kendler et al., 2000; McLaughlin et al., 2010; Nelson et al., 2002; Sartor et al., 

2007). Religiosity has also been shown to have a protective main effect on risk for 

substance use disorders  (Kendler et al., 2003a; Koopmans et al., 1999) . In independent 

samples, educational attainment has been found to be associated with AD (Grant et al., 

2012). Socioregional residence has been shown to influence both religiosity and alcohol 

use (Dick et al., 2001). Marital status has also been shown to be associated with AD 

(Dick et al., 2006a). In data from the National Longitudinal Alcohol Epidemiology Study 

and the National Epidemiologic Study on Alcohol and Related Conditions, marital status 

and educational attainment were associated with alcohol dependence and income was 

associated with alcohol abuse (Caetano et al., 2011). Hicks et. al. assessed six 

environmental risk factors – academic achievement and engagement, antisocial and pro-

social peer affiliations, mother-child and father-child relationship problems, and stressful 

life events – and found that each risk factor had a significant correlation with 

externalizing disorders in adolescence such as substance use disorders and antisocial 

behavior (Hicks et al., 2009).  

These studies stress the important role that specific environmental variables play 

in the risk for alcohol use behaviors and AD. In addition to having a main effect on AD 
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risk, many of these “environmental” factors, have a moderating effect on, and a 

correlation with, genetic risk factors for AD (Dick et al., 2001; Hicks et al., 2009; 

Caetano et al., 2011; Dick et al., 2006a; Koopmans et al., 1999). Ultimately, a 

combination of multiple genetic and environmental factors should be used to predict and 

treat disease.   

 

Psychiatric genetic counseling and testing 

The field of genetic counseling for single gene, Mendelian disorders of high penetrance 

utilizes a large range of testing options that often have high clinical validity. In contrast, 

genetic counseling for phenotypes of complex etiology, including alcohol dependence, 

schizophrenia, and the majority of cancer and autism cases, is limited to a general 

discussion of genetic and environmental contributions to pathogenesis and the use of 

empiric risk estimates rather than direct genetic testing (Harper, 2004). Psychiatric 

genetic counseling is different from genetic counseling for single gene conditions of high 

penetrance in regard to both the degree of uncertainty and the availability of testing. 

Despite these differences, the principles of genetic counseling for each are the same. As 

defined by the National Society of Genetic Counselors (National Society of Genetic 

Counselors' Definition Task Force et al., 2006):  

 

Genetic counseling is the process of helping people understand and adapt to the 
medical, psychological and familial implications of genetic contributions to 
disease. This process integrates: 

- Interpretation of family and medical histories to assess the 
chance of disease occurrence or recurrence. 

- Education about inheritance, testing, management, prevention, 
resources and research. 
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- Counseling to promote informed choices and adaptation to the 
risk or condition.  
 

 Individuals seek genetic counseling for psychiatric disorders due to a variety of 

reasons, including finding out a cause for the disorder and obtaining risk assessments for 

the recurrence of a disorder. Affected individuals may be concerned with the risk of 

passing the disorder to their children. Individuals and their families could be struggling to 

understand the etiology of the condition. Family members of an individual with a 

psychiatric condition may be concerned with their own risks for developing the 

condition, as well as the risks for their children. They may face psychosocial issues 

specific to having a family member with a disorder, such as the “survivor guilt” 

sometimes experienced by siblings and other family members without symptoms. Parents 

of affected individuals may also harbor guilt related to the belief that they played a part in 

causing the illness in their children. Families may face stigma in society. Having a better 

understanding of the psychiatric condition affecting their family could help them better 

develop coping strategies and form behaviorally adaptive practices (Austin and Honer, 

2007). 

 Genetic counseling seeks to address these issues. Risk assessment during a genetic 

counseling session involves gathering a targeted family history to trace psychiatric 

features, along with distinct physical and cognitive features associated with some 

psychiatric conditions, through a three-generation pedigree (Peay et al., 2008). The nature 

of uncertainty in psychiatric phenotypes is addressed through education about the 

environmental and genetic contributions to psychiatric conditions. Currently, population-

based empiric risk estimates based on family history and degree of relatedness to an 
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affected individual, are quoted during counseling about recurrence risks (Harper, 1998). 

Table 1.1 and 1.2 below illustrate the empiric risk to relatives of persons with specific 

psychiatric disorders.  

Table 1.1 Empiric risk for common psychiatric disorders in first-
degree relatives  

 
Psychiatric Disorder General Population First-degree relative 
 

Schizophrenia 
 

1% 
 

5-16% 

Bipolar Disorder 1-5% 4-18% (BPD)             
9-25% (UPD) 

Major Depression 5-35% (females)      
5-15% (males) 

10-25% 

Obsessive Compulsive Disorder  1-3% 10% 
Panic Disorder 2-6% 8-31% 

Adapted from Hill and Sahhar, 2006 
BPD = bipolar depression; UPD = unipolar depression 

 

Table 1.2 Empiric risk for schizophrenia in relatives of a person with 
schizophrenia  

 
Relationship to person with 
schizophrenia Lifetime risk 

General population 1% 
First-degree relative  
   Identical twin 40-48% 
   Fraternal twin 10-17% 
   Sibling 9% 
   Parent 6-13% 
   Offspring 13% 
Second-degree relative  
   Aunt/uncle 2% 
   Niece/nephew 4% 
   Granchild 5% 
Third-degree relative  
   First cousin 2% 
Adapted from (Finn and Smoller, 2006) 

 

Traditional empiric risk for AD for family members of an individual affected with AD 
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from several studies are reviewed in Table 1.3 (from (Merikangas, 1990). 

Table 1.3 Familial empiric risk for AD 
 

Relationship to person with AD  Recurrence risk 

Sibling       11% 

     Sister       1-8% 

     Brother      11.8-12.4% 

Parent       29.8% 

     Mother      1.6-6% 

     Father      16.1-22% 

Parents and siblings as a group   35.6% 

Grandfathers      11%    

 

There exist limitations to risk assessment that focuses primarily on empiric risk 

estimates derived from family history information obtained in family-based population 

studies. As is the case with any risk estimate derived from a population sample, empiric 

risk may not be applicable for a specific individual due to differences in both genetic and 

environmental background, particularly since empiric risk can vary widely across 

multiple studies. Furthermore, empiric risk may not be available for families with 

multiple psychiatric phenotypes or across all family relationships (Austin and Peay, 

2006). Genetic information that has better-characterized risk estimates and is more 

specific to the individual may provide more accurate recurrence risk assessments than 

family history alone.  

 

Attitudes toward genetic counseling and testing for psychiatric disorders in general 

A number of studies investigating attitudes towards genetic counseling in individuals 
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who are affected and their families have shown both a desire for genetic counseling and 

an interest in genetic testing (Peay and Sheidley, 2008; Austin and Honer, 2007; Hill and 

Sahhar, 2006). A survey of 31 individuals with bipolar disorder showed that more than 

75% of them wanted genetic counseling. More than 70% of 48 family members of 

individuals with schizophrenia wanted genetic counseling (Austin and Honer, 2007). 

Several studies assessing interest in genetic testing in independent samples of individuals 

affected with a range of psychiatric disorders and their family members show upwards of 

more than 80% of individuals possessing a desire to test for genes implicated in 

psychiatric disorders. In a survey of 48 members of families with multiple affected 

members, 83% wanted genetic testing for genes of small effect. In regard to prenatal 

testing for psychiatric conditions, of 65 members of the Alliance for the Mentally Ill, 

77% believed that it should be available for bipolar disorder, 85% for schizophrenia and 

autism, 70% for attention deficit disorder, and 55% for panic disorder. Even if there is an 

absence of childhood preventative treatment for a disorder, 68% of the 48 members of the 

bipolar support group sample, which included families and friends of affected individuals, 

endorsed testing for children (reviewed in Smoller et al, pp 30-31, 2008). Further 

investigation into whether or not individuals were interested in genetic testing for major 

depressive disorder revealed that individuals were more likely to be interested in testing 

if they had a personal history of mental illness, a greater than average self-estimated risk 

for depression, had perceived benefits for genetic testing, and – unexpectedly, believed 

that evidence for a genetic component for mental illness would increase social stigma 

(Wilde et al., 2011). Potential for discrimination and interference with privacy decreased 

interest in a genetic test for major depressive disorder (Wilde et al., 2010). 
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Attitudes towards genetic testing for alcohol dependence 

Survey studies specific to interest in risk assessment for alcohol dependence 

suggest that there may be considerable interest in genetic counseling and potential genetic 

testing to determine personal risk for alcohol dependence (Gamm et al., 2004b). Of the 

general population, 60-77% has been reported to share a belief that AD is “a lot” or to 

“some” extent due to genetic effects (Gamm et al., 2004b). In one study of 27 individuals 

with at least one first degree relative with alcohol dependence and an average of three 

additional second and third degree relatives with alcohol dependence, 63% said that they 

would choose to undergo a genetic test to determine their own risk for alcohol 

dependence if a genetic test for alcohol dependence were available. Of interested 

individuals, 59% believed that testing would lead to better prevention or treatment and 

48% believed that it would help address their concerns about their own children’s risk 

(Gamm et al., 2004b). This research on testing attitudes for AD and other psychiatric 

disorders reveal a substantial population that wants to know genetic information. This 

research reveals a need for the careful evaluation of the clinical utility of genetic 

information and subsequent education about genetic testing. 

Research on genetic testing acquisition has shown one caveat about predicting 

testing uptake before a test becomes available: although there appears to be an interest in 

testing for psychiatric conditions, actual decisions to have testing may not be as high as 

predicted once testing does become available. In the case of Huntington disease, a 

smaller proportion of at-risk individuals pursued testing after the gene was found and 

testing became available than the proportion that had been estimated to be interested in 
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testing from survey studies performed before the availability of testing (Evers-Kiebooms 

and Decruyenaere, 1998). Evers-Kiebooms and Decruyenaere showed in 1989 in a large 

survey in Belgium that 66% of individuals at risk for Huntington disease and 74% of 

their partners had indicated that they wanted to make use of testing (Evers-Kiebooms et 

al., 1989). An assessment of testing published in 1998 about a decade after genetic testing 

for Huntington disease became available showed that testing uptake was actually 6-20% 

in at-risk individuals across different populations (Evers-Kiebooms and Decruyenaere, 

1998). 

 

How accurate risk prediction could influence management and prevention 

If clinically valid variants were established for AD, the next step would be to assess the 

clinical utility of genetic testing for AD. Genetic heterogeneity and genetic testing based 

on information from genetic association studies can create increased uncertainty and 

confusion if the usefulness of testing an individual for susceptibility genes of small effect 

is not addressed. When determining whether individuals would benefit from genetic 

testing for a psychiatric disorder, a primary question to ask is whether knowledge of 

particular genetic risk factors changes management in a meaningful way. The hope is that 

risk prediction will help tailor individual treatment for disorders in a number of ways. 

 Currently, a proportion of pharmacological treatment for psychiatric disorders 

consists of trial and error. Pharmacogenetics utilizing panels of variants that predict 

treatment metabolism and response may reduce delay in treatment and remove additional 

toxicity from medication due to inappropriate dosage and drug type (Smoller et al., 2008). 

Heterogeneity in causes within different individuals with alcohol dependence may 
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prompt differences in treatment. Several genetic variants have been shown to have 

potential pharmacogenetic utility for individualized therapy for AD. For example, 

naltrexone, an opioid receptor antagonist that is used as pharmacological treatment for 

alcohol dependence targeted towards mitigating the rewarding response to alcohol, has 

been shown to be differentially effective based on OPRM1 genotype. OPRM1 77G 

carriers have been suggested to have increased mesolimbic dopamine activity in response 

to alcohol and subsequently a greater treatment response to naltrexone (Heilig et al., 

2011). 

 Additionally, Wray et al. asserted that environmental interventions might have the 

greatest impact on risk reduction in those who have the greatest risk to begin with (Wray 

et al., 2008). Therefore, identification of individuals at the highest level of genetic risk for 

targeted intervention may be an effective risk-reducing strategy for a disorder for which 

interventions are available. Knowing risk may help categorize individuals into groups of 

clinical significance for targeted treatment. In the case of AD, previous research has 

suggested that risk variants for AD may confer additional risks for trajectories of 

externalizing behavior across development (Dick et al., 2009). GABRA2 has been 

associated with externalizing trajectories and was shown to interact with parental 

monitoring (Dick et al., 2009). Early prediction of AD may therefore also lead to the 

prediction and interventions for additional categories of risk and phenotypes across the 

lifespan. 

 Knowledge about genetic information for a disorder has been suggested to have a 

potentially unique impact on an individual’s physical and emotional response to 

behavioral recommendations, known as the adherence response (McBride et al., 2012). 
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Testing that provides individualized knowledge of genetic susceptibility may increase 

motivation to make behavioral changes compared with not having information on genetic 

testing. While individuals who seek out genetic tests have been shown to be 

knowledgeable about and motivated to improve health-promoting behaviors, less is 

known about precisely how best to customize interventions based on genetic information 

for individuals across a spectrum of interest in genetic testing (McBride et al., 2012). 

Studies on smoking cessation rates show limited change in cessation after individuals 

receive knowledge about genetic testing information, with either no change in smoking 

rates, or decreases in smoking only during a finite period directly following education 

about genetic testing information. These earlier studies focused on single-gene variants 

that may confer increased susceptibility for lung cancer. More recent preliminary studies 

have shown that individuals who received information on more risk variants resulted in a 

greater likelihood of quitting smoking than individuals who received feedback about 

fewer risk variants (McBride et al., 2010). For alcohol dependence, a clinical scenario 

involving testing for multiple variants would be more likely than testing only for a few 

single gene variants, as AD is a complex trait with multiple genetic influences. The 

question of whether or not testing for multiple genetic variants that increase susceptibility 

to AD would affect behavioral outcomes would need further evaluation.   

 

Ethical, legal, and social implications  

Genetic information is unique in that it may have implications for the health of not only 

the individual being tested, but also that of the individual’s family and future progeny. 

Issues of autonomy may come into play when one person’s decision to test or not to test 
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affects a group of individuals. For the proband, the desire to maintain personal privacy in 

regard to medical information may conflict with a duty to warn family members about 

information that may affect their health. The right not to know genetic information may 

be violated in relatives of an individual who decides to have testing.  

Genetic information specific to multi-allelic disorders of complex etiology may 

have less predictive implications for family members than genetic information for higher 

penetrance Mendelian disorders with single causative alleles. However, intuitive 

knowledge of the familial nature of a complex disorder may still exert a blanket of 

influence on perceptions and decision-making in relatives based on genetic testing in one 

proband. Ultimately, decisions made using genetic information by individuals may 

influence the greater community and population (Smoller, 2008). Individuals who elect 

genetic testing could face the possibility of being labeled and treated with stigma. 

Unaffected individuals with an increased risk resulting from a genetic test may 

experience psychological distress as well as experience discrimination from society, 

insurance companies, and employers, including “anticipatory stigma”, which means 

discrimination to the same extent as affected individuals of unaffected individuals who 

are perceived to be at risk for a disorder (Austin and Honer, 2007). Thus, the ethical 

issues that accompany genetic testing for psychiatric and other complex disorders must 

be addressed alongside research advances. 

 There has been a recent emergence of direct to consumer (DTC) personal genomics 

testing for many multifactorial disorders, including addiction, despite limited information 

about the clinical validity and utility of genetic variants associated with these disorders 

(Mathews et al., 2012). General public perceptions of the clinical utility of direct-to-
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consumer genomic profiling have been shown to be more optimistic than those of 

genetics professionals (Leighton et al., 2012; McGuire et al., 2009; Wilde et al., 2011). 

Public interest in genetic testing may be due in part to a misunderstanding of how 

predictive genetics can be for complex disorders (Lawrence and Appelbaum, 2011). The 

potential harm of inaccurate information for consumers emphasizes the need to couple 

gene-finding efforts with rigorous evaluation of predictive accuracy, and subsequent 

education for the general public about genomic testing (Khoury et al., 2009). 

 

Genetic risk prediction studies 

 There exists debate about whether aggregate profiles of associated markers could 

be used to predict risk for complex diseases (Janssens et al., 2006; Lee et al., 2008; Evans 

et al., 2009). Previous efforts to study risk prediction for complex disorders have assessed 

the predictive ability of genetic sum scores based on number of risk alleles that have been 

associated with a particular disorder.  

Previous studies have investigated the potential for risk prediction for a number of 

common complex disorders. A clinical test is evaluated within the A.C.C.E framework, 

based on the test’s analytical validity, clinical validity, clinical utility, and ethical, legal, 

and social implications surrounding testing (Khoury et al., 2009). Analytical validity is 

the reliability and accuracy of the test measure itself, such as the accuracy of genotyping 

calls on a SNP array. Clinical validity is the degree to which the test can explain and 

predict risk for a disorder. Measures such as sensitivity, or the probability of a positive 

test among individuals with a disorder, and specificity, or the probability of a negative 

test among individuals without the disorder, are indicators of a test’s clinical validity. 
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Clinical utility is the benefits and limitations of the test in changing management of a 

disorder for an individual. Clinical utility can encompasses changes in screening 

procedures, treatment, and preventative behavioral or pharmaceutical measures. It can 

also represent personal utility, in which knowledge about the test results alone can make 

a difference in an individual’s perspective in a beneficial way (Foster et al., 2009). For 

example, an individual who may be suffering from self-blame for having a psychiatric 

disorder may benefit from knowledge that genetics played a role in the disorder’s 

etiology. This individual may be better able to cope with the disorder, even if there are no 

direct changes in treatment or prevention based on the genetic test results alone (Khoury 

et al., 2009; Foster et al., 2009).  

The ability of a clinical test to distinguish between individuals with and without a 

disease is typically assessed based on the test’s sensitivity and specificity. A frequent 

measure of clinical validity is the receiver operating characteristic (ROC) curve (Figure 

1.1), which plots the sensitivity vs. 1-specificity for every cut-off of a continuous 

predictor to distinguish between presence and absence of a disease diagnosis (Spitalnic, 

2004). The area under the ROC curve (AUC) for a continuous predictor corresponds to 

the probability that an individual with the disease would have a higher measured or 

predicted risk than an individual without the disease, and therefore reflects the proportion 

of individuals classified correctly as cases or controls based on the predictor. This 

measure of concordance is also known as the c statistic. An AUC of 0.50 means that the 

predictor can accurately classify 50% of individuals, or no greater than chance, whereas 

an AUC of 1.0 means that the predictor can correctly classify 100% of individuals, 
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corresponding to perfect discriminative ability. An AUC of 0.80 is typically used as a 

target cut-off for screening and 0.99 for diagnosis (Janssens et al., 2006). 

The AUC is a measure of the ability to discriminate between a case and a control, 

as opposed to the positive predictive value (PPV), which is a direct measure of whether a 

person with a positive test result will develop a disease (Cook, 2007). A predictor that has 

perfect discriminatory accuracy will have a single cut-off on the upper leftmost point on 

the ROC curve (Figure 1.1) that corresponds to 100% sensitivity, or 100% true positive 

rate, and 100% specificity, or 100% true negative rate (Attia et al., 2009).  

 

 

Figure 1.1 Sample ROC curve for a hypothetical continuous 
predictor  
Percentages on the curve represent the sensitivity and 1-specificity 
corresponding to every risk score cut-off. 
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Using simulated data of 100,000 individuals with an incidence of 10% for 

coronary heart disease (CHD), van der Net et al. (2009) calculated the area under the 

receiver operating characteristic curve (AUC) to determine the ability of genetic risk 

profiles to discriminate between individuals who will and will not develop CHD. Using 

ten identified variants with odds ratios that varied from 1.13 to 1.42, the AUC was 0.59 

(van der Net et al., 2009). A study by Jakobsdottir et al. showed that a model of 12 SNPs 

for type 2 diabetes had an AUC of 0.64, a model of 2 SNPs for prostate cancer had an 

AUC of 0.56, and a model of 5 SNPs for Crohn’s disease had an AUC of 0.66 

(Jakobsdottir et al., 2009).  

In addition to assessing the ability of using only genetic markers to predict disease, 

the predictive value that a group of genetic markers adds to current clinical predictors of 

disease has been evaluated (Pencina et al., 2008; Greenland, 2008). Gail (2008) showed 

that adding seven SNPs identified from candidate gene studies and genome-wide 

association studies with per allele odds ratios (ORs) ranging from 1.07 to 1.20 to the 

clinically used National Cancer Institute’s Breast Cancer Risk Assessment (BCRAT) tool, 

which takes into account family history, personal history of breast biopsies, and age at 

menarche and first live born for the prediction of breast cancer, only improved the AUC 

from 0.604 to 0.632. This increase was less than that of adding mammographic density to 

the BCRAT (Gail, 2008). In the case of Alzheimer disease, the addition of the APOE 

genotype to existing clinical criteria produced only a nominal increase that was not 

statistically significant (Attia et al., 2009). Talmud et al. (2010) showed that sum scores 

of risk alleles for 20 SNPs associated with type II diabetes did not appear to add to the 
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phenotype-based risk models, Cambridge risk score and Framingham offspring risk score, 

in discrimination for type II diabetes. 

 One reason that genetic variants may not add significantly to risk models that take 

into account other, more easily measured, risk factors is that they may also contribute to 

the very risk factors that are part of the original prediction model (Janssens and van 

Duijn, 2008). Therefore, adding the variants does not add additional information to the 

model. For example, in the Whitehall II prospective cohort study on type II diabetes 

(Talmud et al., 2010), a risk model containing both genetic and clinical predictors was 

assessed, but this risk score could be confounded by the inclusion of family history along 

with genetic sum scores in the models. In light of this, the study showed whether genetic 

variants could add additional information despite possible correlation with family history 

information (Talmud et al., 2010). Another reason is that the ROC may be different for 

populations of patients with different genetic and environmental backgrounds, in which 

case the sensitivity and specificity of a test may not be the same within each background 

profile. Finally, a prediction model that consists primarily of genetic variants has a 

maximum AUC constrained by the heritability of the trait as well as the disease 

prevalence in a population (Wray et al., 2009). This stresses the importance of taking into 

account other medical and environmental predictors when assessing the utility of adding 

genetic components of disease to risk prediction.  

Prior analysis comparing the use of odds ratios to the AUC shows that an OR of 

16 is needed for an AUC of 0.84 (Pepe et al., 2004). Many predictors of multifactorial 

common diseases do not have ORs of this magnitude. A combination of a large number 

of multiple predictors, however, may have greater discriminative power. For example, the 
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Framingham score, an established and validated discriminator of risk of cardiovascular 

disease that discriminates disease status with an AUC of 0.80, includes a number of risk 

factors that have ORs of less than 2.2, much lower than that of the overall score itself; 

none of the factors have enough discriminatory ability individually (Pepe et al., 2004). 

The ORs of associated SNPs for a complex disease such as alcohol dependence in no way 

come close to an OR of 16; SNPs associated with AD often have ORs less than 1.30. A 

panel of SNPs taken together, on the other hand, despite individually small ORs for each 

SNP, may have better discriminatory ability. 

 

Project rationale and design 

This project examined genetic and environmental variables to create risk profiles for 

alcohol dependence, in an effort to provide a clinical interpretation of current research on 

alcohol dependence in the context of risk prediction. The project first studied the 

potential predictive power for AD, and prediction of other complex multifactorial 

psychiatric disorders such as major depressive disorder and schizophrenia, by examining 

the effect of specific characteristics of disease and genetic predictors on clinical 

discrimination using simulated data. Existent data was then used to test how different 

methods of capturing genetic information could be used to predict clinical status for 

alcohol dependence. We assessed several different sources of predictive information 

encompassing genetic and other clinical predictors: data from previously associated 

candidate genes from the literature, family history information, data from genome-wide 

association studies (GWAS), and data from additional environmental and clinical 

variables in addition to genetic information.  
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Information about genetic variants contributing to alcohol dependence came from 

the Collaborative Study on the Genetics of Alcoholism (COGA), which is a National 

Institute on Alcohol Abuse and Alcoholism (NIAAA) sponsored project aimed at 

identifying genes involved in alcohol dependence, with 10 collaborative sites across the 

United States. Both a high-density family-based association sample and a case-control 

genome-wide association study sample have been ascertained. COGA has previously 

reported positive family-based association results for alcohol dependence with 114 SNPs 

in 21 genes using the high-density family sample. Many of these genes have also been 

associated with alcohol dependence in other studies. We created genetic sum scores 

based on risk alleles of associated SNPs in these genes. We then compared the sum score 

with family history in its ability to discriminate between cases and controls for alcohol 

dependence in a subset of the COGA GWAS sample that is independent of the gene-

finding family sample and in a subset of independent individuals in the Study of 

Addiction: Genes and Environment (SAGE) GWAS sample, which is a separate case-

control study for alcohol dependence that also contains individuals with cocaine and 

nicotine dependence. Next, the impact of GWAS results was assessed using both the 

COGA and SAGE GWAS samples. The effects of SNPs across the genome were 

explored by creating genetic sum scores based on subsets of SNPs meeting varying p-

values and creating genetic sum scores consisting of the individual effects of all 

genotyped markers across the genome. Finally, we assessed risk prediction using 

different gene-finding designs based on phenotypes targeted towards reducing the 

heterogeneity of a binary alcohol dependence phenotype and increasing study power to 

detect small effects by studying alcohol dependence symptom count and alcohol 
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dependence subtypes. Together, these studies aimed to combine genetic and 

environmental variables associated with alcohol dependence in order to evaluate how 

both could lead to better risk prediction.  
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Chapter 2: Assessment of predictive ability of genetic information 

for common psychiatric disorders in simulated data 

 
 

Abstract 

 
Simulation studies were conducted to determine the maximum discriminatory accuracy of 

genetic information for models of three psychiatric disorders using receiver operating 

characteristic (ROC) curve analysis. The models broadly reflected the heritabilities and 

lifetime prevalences for major depressive disorder (MDD), alcohol dependence (AD), 

and schizophrenia (SCZ). We found that the highest areas under the ROC curve (AUCs) 

were obtained from polygenic scores created based on results from a gene-finding 

discovery sample of 10,000 cases and 10,000 controls, for all three disorders. For a model 

based on schizophrenia, with a heritability of 80% and prevalence of 1%, the AUC just 

passed 0.90. For major depressive disorder, with a heritability of 30% and prevalence of 

13%, the AUC approached 0.80. If all genetic contributions are included in a prediction 

model for AD, given AD’s heritability of around 50%, AUCs approached 80%. Adding 

environmental risk effects increased the maximum AUC to 0.95 (Maher et al., in 

preparation). 
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Introduction and background 
 
 
The question of whether or not genetic information can be used to predict risk for 

complex disorders has been addressed in multiple studies using both existent data and 

data simulations (Janssens et al., 2006; Purcell et al., 2009; Wray et al., 2007; Wray et al., 

2010; Evans et al., 2009). For multifactorial disorders of complex etiology, a single 

genetic variant is likely to have a small effect on the phenotype, and therefore would 

likely not have significant predictive accuracy. We know that because the heritability of 

complex disorders such as alcohol dependence is not 100%, the predictive accuracy of 

genetic information alone for alcohol dependence would not be 100%. Many studies of 

risk prediction using genetic information have used a “genomic profiling” approach of 

combining multiple SNPs that have been associated with the disorder in question into 

polygenic scores based on the number of risk alleles carried by an individual (Manolio, 

2010; Khoury et al., 2004; Janssens and van Duijn, 2009). The purpose of this study was 

to assess the potential maximum discriminatory accuracy, as measured by the area under 

the receiver operating characteristic curve (AUC), for alcohol dependence (AD), major 

depressive disorder (MDD), and schizophrenia (SCZ) using information from known true 

loci through a genomic profiling approach.  

 Janssens et al. (2006) used data simulations to determine the potential AUCs that 

could be reached for complex disorders based on multiple genetic variants. They assessed 

the impact of number of genes involved, risk allele frequency, disease prevalence, 

heritability, and odds ratios of risk genotypes. They found that high AUCs could be 

reached for several different models. For a group of variants that explained 30% of the 

phenotypic variance, the maximum AUC was 0.83 for a disease with 30% prevalence and 
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0.97 for a disease with 1% prevalence. Wray et al. (2007) commented that the study by 

Janssens et al. did not incorporate error into an individual’s true genetic risk, but instead 

calculated the correlation between genetic risk and disease status to be equal to the square 

root of the broad-sense heritability on the observed scale. Wray et al. presented a 

different model for the predictive ability of genome-wide scores based on disease 

heritability of 0.10-0.20 and prevalence of 0.05 and 0.10 using simulated data. They 

created for these parameters models that differed by the mean and maximum relative risk 

(RR) and maximum proportion of genetic variance explained by one locus, and 

calculated the expected number of loci contributing to the complex phenotype using this 

information. The number of loci is proportional to RR, heritability, and prevalence of a 

disorder. They found that the predictive accuracy of genetic risk was highest when 

10,000 cases and controls were used for a model with heritability of 10% and prevalence 

of 5% caused by 100 loci with RR of 1.15, the accuracy of prediction was 0.97 when 

calculating the correlation between logarithms of the true and predicted probability of the 

disease based on the following:  

, where D = disease, G = genotype 
 

 Posterior probability of disease, given genotype:  
 

 
 

 These simulation studies show that in aggregate, information from SNPs may 

account for more of the variability in disease, and therefore be more predictive of 

diseases in independent samples. We do not know whether a disease model specific to the 

epidemiological model of psychiatric disorders such as alcohol dependence, major 

! 

P(D |G)P(G)

P(D)
= P(G |D)

! 

P(D |G) =
P(G |D)P(D)

P(G)
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depressive disorder, and schizophrenia has the potential for predictive accuracy. 

Accordingly, we examined the effect of specific characteristics of disease on predictive 

power for alcohol dependence, schizophrenia, and major depressive disorder using 

simulated data. Accordingly, data simulations were implemented to mirror polygenic 

etiological models. Polygenic scores were simulated for each sample based on specific 

disease attributes, including heritability, prevalence, allele frequency, genotypic relative 

risk (GRR), p-value threshold used to select associated SNPs in discovery samples, 

genetic correlation between discovery and validation samples, and the sample sizes of the 

discovery and target samples. We addressed whether it is possible to achieve an AUC 

that is generally accepted as a screening threshold, 0.80 (Janssens et al., 2006), using 

genetic information, and then assessed the maximum AUC for a model for alcohol 

dependence with the addition of an environmental effect.  

 One environmental effect that we modeled that has been shown to increase risk 

for alcohol dependence was child sexual abuse. According to the Centers for Disease 

Control and Prevention (CDC) Adverse Childhood Experiences (ACE) Study of 9,367 

females and 7,970 males, 20.7% of participants experienced child sexual abuse 

(http://www.cdc.gov/ace/index.htm). Child sexual abuse has been shown to lead to 

increased risk for alcohol and substance use disorders (Table 2.1). The environmental risk 

factor effect from child sexual abuse was used in the model to determine how much 

predictive accuracy could be obtained from combining genetic information with effects 

of environmental factors. Table 2.1 summarizes studies reporting the effect sizes that 

child sexual abuse has on alcohol and substance use disorders.  

 
Table 2.1 Childhood sexual abuse and risk for alcohol dependence 
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Study Trauma Odds Ratio Details about study 
(Dinwiddie et al., 
2000) 

CSA 2.81 (CI = 1.89-4.17) 
in females 

Prevalence of CSA was 5.9% 
in females and 2.5% in male 

 CSA 1.91 (CI = 1.08-3.39) 
in males 

 

 CSA 3.28 in F, 3.79 M ORs after controlling for 
parental alcohol problems 
and birth cohort  

(Kendler et al., 
2000) 

Any CSA 
 
CSA with 
intercourse 
 

~3 for AD 
 
4-6.5 for AD 

Prevalence of CSA in study 
subjects: 17-21%, females 
only; see table for CIs 
 

(McLaughlin et al., 
2010) 

CSA 2.02 (CI = 1.45–2.80) 
for AD 

Adjusted for co-twin AD 
status, zygosity, and 
interaction between zygosity 
and co-twin AD status 
 

(Nelson et al., 
2002) 

CSA, with 
intercourse 

3.6 for AD Prevalence of having at least 
1 CSA in study subject = 
16.7% in females, 5.4% in 
males 

 CSA, no 
intercourse 

1.81 for AD  

 Sexual abuse 1.6 for SUD OR for SUD was highest for 
sexual abuse 

(Sartor et al., 2007) CSA 1.47 for alcohol 
consumption 

  

Brief summary from several studies on CSA (child sexual abuse): ORs roughly ranged from ~1.4-
6.5 AD = alcohol dependence; SUD = substance use disorder 
  

 
 

Methods 
 

In collaboration with Dr. Brion Maher, we simulated discovery samples, calculated the 

number of true loci based on different genetic and epidemiological models of disease, 

created polygene scores based on associated loci at varying p-value thresholds, and then 

assessed for discriminatory accuracy for the disease of the scores using receiver operating 

characteristic (ROC) curve analyses. We investigated the following models for effects of 
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polygene scores on discriminatory ability, based on prior epidemiological studies: 

schizophrenia and bipolar disorder, with a prevalence of 1% (Perala et al., 2007; 

Weissman et al., 1996) and heritability of 80% (Sullivan et al., 2003); major depressive 

disorder, with a prevalence of 13% (Hasin et al., 2005) and a heritability of 30% 

(Sullivan et al., 2000), and alcohol dependence, with a heritability of 50% (Kendler et al., 

1992; Heath et al., 1997) and a prevalence of 13% (Hasin et al., 2007; Kessler et al., 

1994). The total number of independent SNPs assessed in the Stage I discovery sample 

was 100,000. The mean AUC in the Stage II validation sample was calculated over 100 

iterations for each model.  

We varied the minor allele frequency to be 0.05, 0.1, 0.2, 0.3, and 0.4. The GRR 

was ranged from 1.0 to 2.0. The p-value thresholds for significance in Stage I disease for 

selection of SNPs to predict risk in Stage II disease used were Pt < 1x10-4 , Pt<0.001, 

Pt<0.01, Pt=0.05, Pt=0.1, Pt=0.2, Pt=0.3, Pt=0.4, and Pt=0.5. The discovery and target 

sample sizes included 1,000 cases and 1,000 controls, 2,000 cases and 2,000 controls, 

5,000 cases and 5,000 controls, and 10,000 cases and 10,000 controls. The number of 

disease loci was calculated based on the equation derived by Wray et al. (2007):  

 

𝑁 =
(log(ℎ! + (1−  h!)𝐾)− log(𝐾))

{2[log(1+MAF(GRR ∗ 2− 1))− log((1+MAF(GRR− 1))2)]} 

 

where N = number of disease loci, ℎ! is the heritability of the disease, K is the 

prevalence of the disease, MAF is the minor allele frequency of the variant, and GRR is 

the genotype relative risk, or the ratio of disease risks between those with and those 

without the susceptibility genotype(s) for the disease loci.   
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The baseline genetic risk for a homozygous genotype for the normal allele, b, was 

calculated as:  

𝑏 =
𝐾

{ 1−MAF ! + 2 1−MAF MAF GRR +MAF! 1+ 2(GRR− 1) } 

 

The probability of affection status, given genotype is: 

 P (D | G) = b (1+2(GRR-1)) 
 
 

Using Bayes’ Theorem, the probability of genotype, given affection status, is:  
 

𝑃(𝐺|𝐷) =
𝑃 𝐷 𝐺 𝑀𝐴𝐹!

𝐾  

Mitra’s non-centrality parameter was calculated based on sample size and case-control 

minor allele frequency for association tests (Mitra, 1958) . Varying critical values were 

set for each p-value cutoff. The mean polygenic sum scores and the variance of the 

polygenic sum scores were calculated from results for each significance threshold, based 

on the probability of genotypes given affection status, minor allele frequency, and 

proportion of null loci vs. disease loci at each threshold. The polygenic scores were then 

used to assess discriminatory accuracy in the Stage 2 target/validation case-controls 

samples. The AUCs for the polygenic scores were calculated based on the Wilcoxon 

rank-sum test. All data simulations and analyses were performed in SAS (SAS Institute 

Inc., Cary, NC, USA).  

 

Results 
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Results showed that as GRR increased, the number of susceptibility loci decreased and as 

heritability increased, so did the maximum AUC. At a Stage I discovery phase with 

10,000 cases and 10,000 controls, AUC was highest and was just over 0.90 for a model 

with heritability of 0.80. Similar patterns were shown for the models for alcohol 

dependence, with a heritability of 0.50 (AUCs approaching 0.80), and major depressive 

disorder, with a heritability of 0.30, though the AUC is not as high (AUCs approaching 

0.80, but not as high as those for AD). As p-value thresholds used to select SNPs to 

create polygenic scores become less stringent, at p<1x10-4, the AUC was highest than for 

more liberal p – value thresholds. Adding the effect of environmental risk factors 

increased the AUC substantially.  

Figure 2.1 illustrates the AUCs corresponding to each polygenic score for models 

for major depressive disorder, alcohol dependence, and schizophrenia. The genotype 

relative risk (GRR) is plotted on the x-axis. Plots are shown separately for scores 

composed of variants with different minor allele frequencies. Rho represents the genetic 

correlation between the discovery (Stage 1) and target (Stage 2) sets. In the scenarios 

shown below in which the same phenotype is assessed for Stage 1 and Stage 2 datasets, 

rho is 1 between the discovery and target samples. Shown below are the maximum AUC 

estimates obtained from the models. The results from the largest Stage 1 discovery case-

control set of 10,000 cases and 10,000 controls had the highest AUCs. Changes in the 

number of Stage 2 validation cases-control set did not change the AUC estimates. 

Smaller discovery sample sizes reduced the maximum AUC.  

 

Figure 2.1 AUC estimates for polygenic scores for three different psychiatric disorders.   
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Details specific to each disorder are listed, including heritability and prevalence. 
Polygenic scores selected at different p-value significance thresholds are plotted in 
separate panels for each condition. The number of independent SNPs represents SNPs 
used in the association analyses in Stage 1 samples. The number of Stage 1 (discovery 
sample) and Stage 2 (target sample) cases and controls are specified. The y-axis plots 
the AUCs corresponding to each model. The x-axis lists genotypic relative risk (GRR). 
Results are plotted separately for varying minor allele frequencies (MAF). 
 
 

Major Depressive Disorder 
10,000 Stage 1 Cases, 10,000 Stage 1 Controls 

1,000 Stage 2 Cases, 1,000 Stage 2 Controls 
100,000 Independent SNPs, rho = 1, h2 = 30%, Prevalence = 13% 

 

 
 
 

Alcohol Dependence 
10,000 Stage 1 Cases, 10,000 Stage 1 Controls 

1,000 Stage 2 Cases, 1,000 Stage 2 Controls 
100,000 Independent SNPs, rho = 1, h2 = 50%, Prevalence = 13% 
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Schizophrenia 
10,000 Stage 1 Cases, 10,000 Stage 1 Controls 

1,000 Stage 2 Cases, 1,000 Stage 2 Controls 
100,000 Independent SNPs, rho = 1, h2 = 80%, Prevalence = 1% 
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Based on the model for AD, Table 2.2 summarizes AUCs resulting from 

prediction using polygenic scores that include increasing proportions of true loci, and 

conversely, decreasing proportions of null loci for a hypothetical model containing 100 

true loci, with minor allele frequency of 0.30 and genotypic relative risk of 1.20. When a 

polygenic score consisting of 100% true loci and 0% null loci is included as the sole 

predictor for AD, with a prevalence of 13% and heritability of 50%, then the score has an 

AUC of approximately 0.78, under the maximum AUC conditions described shown in 

Figure 2.1. Figure 2.2 illustrates the AUCs of scores that include both genetic and 

environmental effects for a model including all 100 true loci. 

 
Table 2.2 AUCs for polygenic scores consisting of mixture of true 

and null loci. 
 

Proportion 
of true loci N true loci N null loci AUC 
1 100 0 0.77980444 
0.9 90 10 0.75846888 
0.8 80 20 0.7340018 
0.7 70 30 0.71060652 
0.6 60 40 0.68497332 
0.5 50 50 0.65534604 
0.4 40 60 0.63169552 
0.3 30 70 0.59919648 
0.2 20 80 0.56812712 
0.1 10 90 0.53579312 
This table displays the corresponding AUCs for increasing 
proportions of true loci (N true loci) compared with number of null 
loci (N null loci) contributing to AD for a model in which there exists 
100 true loci.  

 
 
 

Figure 2.2 Plot of AUC estimates for polygenic scores combined 
with environmental effects.  

 
The y-axis shows the AUC estimates for the polygenic scores for alcohol dependence. 
The green line in this figure plots the AUCs corresponding to a genetic score composed 
of 100% of 100 true loci, with the addition of environmental factors that contribute to 
alcohol dependence. Plotted on the x-axis are increasing effect sizes for environmental 
factors. The red line plots the AUC = 0.50 point, which is equivalent to the AUC a score 
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that can classify accurately 50% of cases and controls, or predicting no better than 
chance.  
 
 

 
 
 

 

Discussion 

 
Data simulations presented here show that using a highly-powered sample with a large 

discovery sample size to detect a greater proportion of true loci contributing to three 

common psychiatric disorders produces higher AUCs for polygenic scores created based 

on SNPs meeting more stringent p-value thresholds of p < 10-4. Discovery sample sizes 

of 10,000 cases and 10,000 controls resulted in polygenic scores that had the highest 

discriminatory accuracy, and showed that discovery samples of this magnitude are 

necessary for AUCs approaching 0.80. As expected, AUCs of polygenic scores were 

highest for the most heritable condition, schizophrenia, lower for alcohol dependence, 

and lowest for the condition with the lowest heritability of the three, major depressive 
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disorder. AUCs of greater than 80% were achieved for schizophrenia. For alcohol 

dependence and major depressive disorder, AUCs approached 0.80.  

These results differ from results using existent data from the Welcome Trust Case 

Control Consortium (WTCCC) and the International Schizophrenia Consortium (ISC) in 

that SNPs in the latter two studies that were selected based on the most liberal thresholds 

actually resulted in the highest proportion of variance accounted for in the trait in 

question. The reason for this difference lies in failure to fully correct for population 

stratification in the real data. Population stratification can occur if cases and controls 

differ in a variable other than disease status, and concurrently differ in frequencies of 

alleles that are correlated with this additional variable. If this occurs, allele frequency 

differences between cases and controls that are attributable to differences in the 

additional variable could mistakenly be attributed to disease status if differences in the 

third variable are not corrected for. For example, if there exist differences in ancestry 

between cases and controls and these differences are not accounted for, alleles 

attributable simply to ancestry differences could be spuriously associated with the disease 

phenotype. In the case of WTCCC, because population stratification was not fully 

accounted for, only more liberal significance thresholds would be able to incorporate a 

greater proportion of true loci in the polygenic score. Scores composed of variants 

meeting more stringent p-value thresholds in this case would incorporate more spurious 

results due to population stratification that would therefore fail to replicate in independent 

samples (Evans et al., 2009).  

As the size of the discovery sample increases, there is more power to detect 

individual SNPs of small effects. Similar to our results, Purcell et al. (2009) showed 
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through simulations that in cases of a larger discovery sample size with more power, a 

more stringent p-value threshold would be able to select SNPs that account for more of 

the variance in a trait in a target sample than SNPs selected at the same threshold in a 

smaller discovery sample with less power. In a large sample, a less stringent threshold 

would include more null loci that outweigh the true loci that have been detected in the 

sample at more stringent thresholds, and therefore SNPs selected at more liberal 

thresholds would actually account for less variance in a trait in a target sample (Purcell et 

al., 2009). This is consistent with our results in larger discovery sample sizes of 10,000 

cases and 10,000 controls, which had the highest AUCs for the most stringent p-value 

thresholds. The fact that AUCs increased with increasing discovery sample sizes, but did 

not change with increasing validation sample sizes stresses the importance of developing 

sample sizes with high power to detect true associations before assessing for replication 

or clinical validation in independent samples. Smaller discovery sample sizes have 

insufficient power to detect true risk loci with small GRRs. Collaborative projects and 

consortia are underway for psychiatric conditions, making studies with sample sizes of 

10,000 cases and 10,000 controls a reality, particularly in the Psychiatric GWAS 

consortium, which is a large-scale collaboration studying five major psychiatric diseases:  

ADHD, autism, bipolar disorder, major depressive disorder, and schizophrenia (Sullivan, 

2010). The largest study to date for an alcohol-related trait consists of 12 European 

American samples, including a total of 21,607 individuals, with a replication sample of 

21,185 individuals. This study reported an association between alcohol consumption and 

the autism susceptibility candidate 2 gene (AUTS2) and was one of the first studies to 

report a genome-wide significant finding for an alcohol-related trait (Schumann et al., 
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2011). However, the combined sample for alcohol consumption was population-based; 

none of the 12 samples was ascertained based on alcohol dependence diagnosis. 

Currently, many alcohol dependence samples have modest sizes; many include fewer 

than 1,000 alcohol-dependent cases. Alcohol dependence consortia combining multiple 

samples are currently underway. In Europe, the Alcohol-GWAS (AlcGen) Consortium 

was created as a part of the European Network on Genomic and Genetic Epidemiology 

(ENGAGE) Program, which studies a variety of common complex diseases 

(http://www.euengage.org/). In the United States, a meta-analysis of alcohol consumption 

is being undertaken using European American samples in the National Cancer Institute 

(NCI; N = 17,000) and the Gene Environment Association Studies Consortium 

(GENEVA; N = 17,000), which includes the collaborative alcohol dependence sample, 

the Study of Addiction: Genes and Environment (SAGE; N = 4121) (Agrawal et al., 

2012) .  

The results of these data simulations show that there is potential for 

discriminatory accuracy that reaches higher AUCs typical of screening tools for 

psychiatric conditions with similar genetic models to the one presented here for 

schizophrenia. For alcohol dependence, when all genetic contributions are known and 

used to predict risk in independent samples, then the AUC could potentially approach 

0.80. Adding larger environmental effects such as the one modeled by the lower end 

estimate of the effect of child sexual abuse on AD (odds ratio ~2) increases the AUC for 

classifying AD even more to 0.95, which exceeds the 0.80 marker of a good screening 

tool. As we continue to pursue the identification of risk factors for alcohol dependence, 

we will learn more in depth about the genetic architecture of alcohol dependence. This 
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knowledge may in turn lead to better risk assessment using genetic and environmental 

factors.  
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Chapter 3: Genetic risk prediction using candidate gene variants 

and family history 

 
 

Abstract 

A number of studies investigating the clinical utility of genetic variants associated with 

complex disorders have illustrated the limitations and potential benefits of using genetic 

information in risk prediction for complex traits (Evans et al., 2009). The focus of this 

study was to assess the clinical validity of previously published genetic variants 

associated with alcohol dependence (AD) in predicting risk for AD in an independent 

sample. The predictive ability of these variants in aggregate was compared to family 

history. Using the Collaborative Study on the Genetics of Alcoholism (COGA) and the 

Study of Addiction: Genes and Environment (SAGE) genome-wide association study 

(GWAS) samples, we performed receiver operating characteristic (ROC) curve analysis 

to estimate the ability of a panel of SNPs to correctly classify cases and controls for 

DSM-IV AD. Specifically, sum scores of risk alleles were generated for a panel of 22 

semi-independent SNPs correlated at r2 <0.50, covering 15 genes, and a panel of 18 

SNPs, correlated at r2<0.25, covering 15 genes, that had reported associations with 

alcohol dependence in the COGA high-density family-based association sample. We 

identified a subset of individuals consisting of 627 cases and 454 controls from the 

COGA GWAS sample and 610 cases and 992 controls from the SAGE GWAS sample 
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that were not part of the original family-based association sample. We then performed 

ROC analysis for the sum scores in these subsets. These analyses did not result in 

significant discriminative ability for the sum scores; the area under the ROC curve 

(AUC) for the panel of SNPs correlated at r2<0.50 was 0.498 (95% CI = 0.463, 0.533, p = 

0.915) in COGA and 0.496 (95% CI = 0.466, 0.525, p = 0.782) in SAGE. For the SNPs 

panel correlated at r2<0.25, the AUC was 0.491 (95% CI = 0.456, 0.525, p = 0.595) in 

COGA and 0.492 (95% CI = 0.462, 0.521, p = 0.583) in SAGE.  These results suggest 

that the SNPs are not predicting better than chance. The presence or absence of family 

history for AD was a better classifier of case control status in the COGA sample, with an 

AUC of 0.686 (95% CI = 0.654, 0.718, p < 0.001) and 0.587 (95% CI = 0.558, 0.617, p < 

0.001) for a paternal history of AD-related traits in SAGE. This study shows that these 

SNPs currently have limited clinical validity and illustrates the need for further expansion 

of prediction panels for a complex disorder that encompasses both environmental and 

genetic risk factors of small effect such as AD. 
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Introduction 
 
Alcohol dependence (AD) is a complex psychiatric disorder with approximately 50-60% 

heritability (Kendler et al., 1992; Heath et al., 1997; Gelernter and Kranzler, 2009) and 

12.5% lifetime prevalence in the United States (Hasin et al., 2007). Numerous genetic 

variants have been reported to be associated with AD. Many of these gene-finding 

measures were carried out in the Collaborative Study on the Genetics of Alcoholism 

(COGA), which is a large-scale collaborative study consisting of families with 

individuals who meet both DSM-IIIR and Feighner criteria for AD recruited from alcohol 

treatment centers across the United States. Family-based association studies in a high-

density subset of the COGA sample consisting of families with 3 or more first-degree 

relatives who meet lifetime criteria for AD yielded many associated genes, many of 

which have been replicated in other studies (Edenberg and Foroud, 2006).   

Genes that have been associated with AD in COGA include genes involved in 

alcohol metabolism, such as the alcohol dehydrogenase and aldehyde dehydrogenase 

genes (ADH and ALDH) (Edenberg et al., 2006; Luo et al., 2005b; Edenberg, 2007a; 

Guindalini et al., 2005) . Genes encoding subunits of receptors that respond to gamma-

aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous 

system, including GABRB3, GABRG3, and GABRA2, as well as dopamine receptor gene 

DRD2 and the neighboring gene ANKK1, have been associated with AD, providing 

evidence that variation affecting reward pathways could be involved in susceptibility to 

AD (Edenberg et al., 2004; Covault et al., 2004; Lappalainen et al., 2005; Drgon et al., 

2006; Fehr et al., 2006; Soyka et al., 2008; Enoch, 2008; Enoch et al., 2006; Dick et al., 

2007d; Dick et al., 2004; Noble et al., 1998; Song et al., 2003). Additional genes 
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encoding receptors such as the nicotinic receptor CHRNA5 (Wang et al., 2009; Saccone 

et al., 2007), the opioid receptor genes PDYN and OPRK1 (Xuei et al., 2006; Xuei et al., 

2007; Gerra et al., 2007; Williams et al., 2007), the muscarinic receptor CHRM2 (Wang 

et al., 2004; Luo et al., 2005a; Kendler et al., 2011), and the neurokinin receptor TACR3 

(Foroud et al., 2008), and ACN9 (Dick et al., 2008b), which is involved in 

gluconeogenesis have all been associated with AD in COGA. Table 3.1 lists the genes 

that have been associated with AD in the COGA high-density subset, with its 

corresponding COGA family-based association study and replication studies.   

 

Table 3.1 Genes Associated with Alcohol Dependence in COGA 
 

Study Gene Replication 
(Edenberg et al., 2004) GABRA2 (Covault et al., 2004; Fehr et 

al., 2006; Lappalainen et al., 
2005; Soyka et al., 2008; 
Enoch et al., 2006; Drgon et 
al., 2006) 

 

(Dick et al., 2004) GABRB3 and 
GABRG3 

(Noble et al., 1998; Song et 
al., 2003) (GABRB3) 

 

(Wang et al., 2004) CHRM2 (Luo et al., 2005a; Kendler et 
al., 2011) 

 

(Hinrichs et al., 2006) TAS2R16 

 

(Wang et al., 2009) CHRNA5 (Saccone et al., 2007) 
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(Xuei et al., 2006) PDYN and OPRK1 (Williams et al., 2007; Gerra 
et al., 2007) 

 

(Edenberg et al., 2006) ADH genes: ADH4, 
ADH1A, ADH1B 

(Luo et al., 2005b; Guindalini 
et al., 2005) 

 

(Edenberg et al., 2008) NFKB1 (Kendler et al., 2011) 
 

(Foroud et al., 2008) TACR3 

 

(Dick et al., 2008b) ACN9 

 

(Dick et al., 2007) ANKK1/DRD2 (Comings et al., 1994; Blum 
et al., 1990; Blum et al., 1991; 
Noble et al., 1991; Amadeo et 
al., 1993; Amadeo et al., 
2000; Foley et al., 2004; 
Hietala et al., 1997; Ishiguro 
et al., 1998; Konishi et al., 
2004; Kono et al., 1997; Dick 
et al., 2007d)  

 

 
The association of genetic variants with complex disease has spurred dialogue on 

and assessment of risk prediction using genetic information for common multifactorial 

disorders (Jostins and Barrett, 2011; Janssens et al., 2006). For some complex disorders, 

such as diabetes, risk algorithms based on clinical measures such as the Cambridge and 

Framingham risk score have a high degree of clinical validity for screening; the area 

under the receiver operating characteristic (ROC) curve (AUC) exceeds 0.80 for type II 

diabetes. In these cases, genetic information has not been shown to add predictive value 

(Talmud et al., 2010). A risk model for alcohol dependence based on clinical variables 

does not exist. The process of genetic counseling for a complex psychiatric disorder such 
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as alcohol dependence involves helping individuals understand, manage and cope with 

genetic risk so that they have less anxiety and more empowerment over what many 

consider to be a devastating disorder over which one has little control (Peay and 

Sheidley, 2008).  

A discussion for an individual who is concerned about risk for alcohol 

dependence may focus on current knowledge about the etiology of alcohol dependence 

and a detailed history of clinical and sub-clinical features for alcohol dependence and 

possible co-occurring conditions in both sides of the family. Risk assessment combines 

family history, environmental risk factors, and empiric risk estimates for alcohol 

dependence across family studies (Peay and Sheidley, 2008). 

Current risk assessment does not include genetic testing for common variants and 

the predictive value of genetic testing for alcohol dependence has yet to be determined. 

This study investigates whether a panel of candidate gene SNPs that have been associated 

with alcohol dependence can be used in risk prediction for alcohol dependence. Most of 

the genetic variants contributing to complex disorders such as type II diabetes and 

alcohol dependence have small effect sizes. This, along with the fact that alcohol 

dependence has both genetic and environmental risk factors, means that any one SNP 

alone is not expected to be a good predictor of alcohol dependence. This study aims to 

explore the aggregate impact of multiple genetic variants with small effect sizes on 

clinical risk prediction.  

This study also assesses the validity of family history in predicting risk for 

alcohol dependence. Of the general population, approximately 40% report some family 

history of AD and approximately 7-9% of the population report having both first and 
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second-degree relatives with AD (Gamm et al., 2004). Family history can account for 

more of the latent genetic vulnerability and parental environment contributing to alcohol 

dependence that is not captured on panels of candidate gene SNPs alone. Research has 

shown that family history can be a powerful tool for prognosis and prediction and can 

have practical clinical utility for both complex diseases and Mendelian syndromes. It can 

be used to help predict illness severity and stratify individuals into specific prognosis 

groups with distinct treatment and prevention needs (Pyeritz, 2012; Odgers et al., 2007; 

Milne et al., 2009).   

In this study, we created additive genetic sum scores based on genetic variants in 

candidate gene studies from the high-density family-based association analyses in COGA 

that are summarized in Table 3.1. We determined the allele conferring increased risk for 

AD in the high density family-based association sample and then created sum scores by 

adding the number of risk alleles carried by individuals in two independent samples: the 

portion of the COGA Genome-Wide Association Study (GWAS) sample that was not 

part of the COGA high-density family-based association sample and a portion of the 

Study of Addiction: Genes and Environment (SAGE) GWAS sample that is independent 

of the COGA sample. We also explored the effect on risk prediction when family history 

information and genetic information were combined. We tested whether individual 

variants may add more specific information for an individual’s risk profile, beyond that 

of the latent genetic factors captured by family history alone, and therefore increase risk 

prediction. Furthermore, because the variants associated with AD from candidate gene 

studies were associated in more densely affected samples with multiple affected family 

members, we assessed whether the candidate gene sum scores would be more informative 
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in determining affection status in the context of a positive family history of AD compared 

with a negative family history of AD. In these analyses, we stratified the sample into 

positive and negative family history of AD before performing subsequent ROC curve 

analyses.  

 

Materials and methods 

Sample and measures 

COGA family-based association analysis sample 

COGA is a large-scale multi-center family study with 10 collaborative sites across the 

United States. The sample consists of families containing probands meeting both DSM-

IIIR and Feighner criteria for AD ascertained since 1989 from outpatient and inpatient 

alcohol treatment centers at 7 sites across the United States: Indiana University, State 

University of New York Health Science Center, University of Connecticut, University of 

Iowa, University of California/San Diego and Washington University in St Louis, and 

Howard University (Begleiter et al., 1995) . Families were interviewed using a poly-

diagnostic instrument, the Semi-Structured Assessment for the Genetics of Alcoholism 

(SSAGA), which assesses Feighner, DSM-IIIR, DSM-IV, and ICD-10 criteria for major 

psychiatric disorders (Feighner et al., 1972; American Psychiatric Association, 1987; 

American Psychiatric Association, 2000; World Health Organization, 2008) . More than 

1300 probands with AD have been recruited. Unaffected subjects were defined as 

individuals who drank but did not meet criteria for AD or other substance abuse disorders 

(Wang et al., 2008). In order to obtain normative measures and provide a comparative 
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general population sample, unscreened control families were selected from the 

community through a variety of methods (Edenberg et al., 2005; Edenberg and Foroud, 

2006). A subset of the COGA sample was identified as a group of high-density families 

with 3 or more first-degree relatives who met lifetime criteria for AD. This sample 

consists of more than 300 extended families for a total of more than 3000 individuals 

(Edenberg and Foroud, 2006).  

SNPs included in this analysis were selected from 9 COGA papers reporting 

family-based association analyses for AD using individuals from the high-density subset 

(Table 3.1). The number of individuals included varied across studies: association 

analyses that encompassed all ancestries ranged from 2139 to 2310 individuals from 262 

families; 35 of these families, comprising a total of 298 individuals, are of African 

American (AA) ancestry. Analyses conducted in the European American (EA) subset 

ranged from 1172 to 1923 individuals from 217-219 families. Genotyping for these 

individuals is described in detail in the original COGA papers. Briefly, SNPs within and 

flanking candidate genes were selected from public databases including dbSNP 

(http://www.ncbi.nlm.nih.gov/SNP), HapMap (http://www.hapmap.org), and LocusLink 

(http://www.ncbi.nim.nih.gov/LocusLink/refseq.html). Genotyping was done using a 

modified single nucleotide extension reaction, with allele detection by mass spectrometry 

(Sequenom MassArray system; Sequenom, San Diego, CA, USA). SNPs were in Hardy 

Weinberg Equilibrium. Genotypes were checked for Mendelian inheritance using 

programs including PEDCHECK. USERM13 was used to calculate marker allele 

frequencies and heterozygosities (Edenberg et al., 2008).  
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COGA GWAS sample 

A case-control sample of 1945 phenotyped subjects was selected from the larger COGA 

sample for genome-wide association studies. Cases had a lifetime diagnosis of AD by 

DSM-IV criteria. Controls reported consuming alcohol but did not have a diagnosis of 

AD or alcohol abuse by any of the diagnostic criteria assessed by SSAGA and did not 

meet diagnostic criteria for dependence on cocaine, marijuana, opioids, sedatives, or 

stimulants. Controls could not share a known common ancestor with a case and were 

preferentially selected to be above the age of 25 years. 1081 individuals in the COGA 

GWAS EA sample were independent of the COGA family sample.  

Genotyping was completed using the Illumina Human 1M DNA Analysis 

BeadChip at the Center for Inherited Disease Research (CIDR). Additional details on the 

COGA GWAS sample can be found in Edenberg et al. (2010).  

 

SAGE GWAS sample 

The Study of Addiction: Genes and Environment (SAGE) is part of the Gene 

Environment Association Studies initiative of the National Human Genome Research 

Institute to identify genetic contributions to addiction through large-scale genome-wide 

association studies. The entire SAGE sample consists of 4,121 cases and unrelated 

controls from subsets of three large studies on addiction: the Family Study of Cocaine 

Dependence (FSCD), the Collaborative Genetic Study of Nicotine Dependence 

(COGEND), and COGA. All cases in SAGE have DSM-IV lifetime diagnosis of AD. 

Controls were exposed to alcohol. Some controls met criteria of nicotine dependence 

based on the Fagerström Test for nicotine dependence, but none met criteria for a DSM-



www.manaraa.com

 
 

 
 
 

59 

IV lifetime dependence diagnosis for alcohol, marijuana, cocaine, opiates or other drug. 

The FSCD and COGEND portions of the SAGE GWAS EA sample were extracted for 

use as a second independent sample to assess for discriminative ability. 

Genotyping for all three studies that are part of the SAGE GWAS sample was 

completed at CIDR using the Illumina Human 1M DNA Analysis BeadChip. Additional 

details on the SAGE GWAS sample can be found in Bierut et al. (2010). 

  

Family history measures 

Family history information for the COGA GWAS sample was obtained for both cases 

and controls as a dichotomous “yes” / “no” variable for any existence of a family history 

of AD in relatives, as reported by the subject. The SAGE GWAS sample included a “yes” 

/ “no” variable about history of AD in specifically the proband’s mother and father. The 

presence or absence of family history was primarily used as a binary variable in order to 

reflect clinical scenarios in which an individual is asked whether or not she or he has a 

family history of alcohol dependence. Both COGA and SAGE had information about 

parental history of AD based on a more inclusive, or “relaxed” criterion and a more 

stringent “strict” criterion. Family history information was also expanded further into an 

ordinal variable based on parental history that addressed whether an individual had 0, 1, 

or 2 parents with a history of alcohol dependence.  

 

Data analyses 
 
Data analysis overview 



www.manaraa.com

 
 

 
 
 

60 

SNPs that were previously associated with AD in candidate gene studies in the COGA 

high-density family-based association sample were used to create a candidate gene sum 

score to assess prediction of AD in independent individuals from the COGA and SAGE 

GWAS samples. Because the SNPs contributing to the candidate gene sum scores were 

previously reported to be associated in either all-EA or >85% EA samples, a genetic sum 

score based on results from these studies would possibly be applicable primarily to EA 

individuals. Therefore, we assessed predictive ability in the EA subsets of the COGA and 

SAGE samples. We first determined the alleles conferring risk for AD using the family-

based association study, and then used the alleles to create additive genetic sum scores to 

assess for risk in the COGA and SAGE GWAS samples (Figure 3.1).  

Figure 3.1 Study Overview 
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Family-based association analysis 

In order to create genetic sum scores for prediction of alcohol dependence, risk alleles 

needed to be determined for each SNP that had been associated with alcohol dependence 

in prior reports. Because the exact allele conferring increased risk for alcohol dependence 

was not explicitly reported for each COGA paper, analyses were repeated for each study 

using the Pedigree Disequilibrium Test (PDT) in UNPHASED (PDTPHASE), as 

described in the original COGA papers (Table 3.1). The statistic used for association, 

specific measure for alcohol dependence, and the population selected for analyses varied 

across the published COGA studies. For example, the study reported by Edenberg et al. 

(2004) used the PDT average statistic, which averages all association statistics across 

families, to study the association of GABRA2 SNPs with AD diagnosed using DSM-IV 

criteria, whereas the study by Xuei et al. (2006) also reported the PDT average statistic, 

but examined the association of PDYN with AD based on DSM-III and Feighner criteria. 

In contrast to the PDT statistic used by Xuei et al. and Edenberg et al., the study by Dick 

et al. (2007) used the PDT sum statistic, which places greater weight on families with 

more informative trios and discordant siblings. All results in our study were generated to 

match the statistic, diagnosis, and population used by each previously published COGA 

candidate gene study. The PDT average statistic was used in the majority of the COGA 

candidate gene studies. Wang et al. (2004) reported the PDT sum statistic in addition to 

the PDT average statistic. In order to match the majority of studies, statistics used in our 

association analysis consisted of the PDT average and/or sum statistics. In addition to 

PDT, Dick et al. (2004) also performed a classic TDT analysis in TRANSMIT using one 

trio selected from each COGA family. Wang et al. (2008) used the family-based 
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association test (FBAT); risk alleles for these analyses were obtained via correspondence 

with Dr. Wang. In the family-based association analyses, multiple outcomes were used 

across studies. Depending on the diagnosis used in the study, the DSM-IV, DSM-IIIR, or 

DSM-IIIR + Feighner Criteria for the COGA definition of alcohol dependence were used 

as outcomes.  

 

SNP selection 

Several criteria were used in the selection of the panel of SNPs used for classification of 

alcohol dependence status. An initial list of 114 SNPs across 21 genes was generated 

based on prior association with alcohol dependence according to either DSM-IV or 

COGA (DSM-IIIR + Feighner) criteria. A smaller proportion of the sample had early-

onset (≤ 22 years of age) alcohol dependence (N = 454 in COGA and N=811 in SAGE). 

SNPs associated only with early onset alcohol dependence were removed from the list so 

that SNPs in the candidate gene panel would be applicable to the wider range of ages of 

individuals in the full COGA and SAGE validation samples. The age of onset for AD in 

the independent COGA GWAS sample ranged from 12 to 65 years of age. Age of onset 

in the FSCD and COGEND portion of the SAGE GWAS sample ranged from 13 to 55 

years of age. Because assessment of discriminative accuracy was to be performed in 

European American individuals, SNPs that were associated only in the African American 

subset were removed from the list. Forty-two of the SNPs showing association in the 

original papers were present on the Illumina Human 1M DNA Analysis BeadChip. Proxy 

SNPs on the Illumina chip with an r2 > 0.70 were found for 32 SNPs based on LD 

calculations in the HapMap CEU data using Haploview (Barrett et al., 2005) and Plink 
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version 1.07 (Purcell et al, 2007). Thirty-two of the SNPs did not have proxies. Seven of 

these SNPs had proxies in the list of COGA family sample SNPs for which proxy SNPs 

existed on the Illumina chip, based on LD calculations using Haploview. The final list 

contained 81 SNPs. 

In order that genes with a large number of associated SNPs in high LD were not 

disproportionately represented in the risk panel, we generated a list of semi-independent 

SNPs for the panel. We explored the effect of pruning SNPs based on different r2 

thresholds; SNPs that were more correlated than these thresholds were removed from the 

list. We first assessed the use of a more inclusive panel with a pruning threshold of r2 < 

0.50, and then used a more stringent threshold of r2 < 0.25. All SNPs in this panel were 

included in the HapMap list, but not all SNPs were part of the Illumina 1M SNP chip. In 

order to create the panel without using information from the independent validation 

samples, LD estimations used for pruning the SNPs were based on the HapMap Phase 3 

CEU data rather than data from the COGA GWAS sample. Calculations for LD were 

performed using the Plink version 1.07 LD function (Purcell et al., 2007). Selection of 

which SNP of a pair of correlated SNPs to remove depended on a ranked list of SNPs 

based on the level of significance from the family-based association results and how 

closely the SNP on the Illumina chip matched the original family-based SNP. SNPs were 

rank-listed in the following order:  

 

1. SNPs from the family studies with exact matches in the COGA GWAS list of 

SNPs, ranked in descending order for their corresponding p-values from the 

family studies.  
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2. Proxy SNPs in the COGA GWAS sample for the SNPs in the family sample, with 

r2 > 0.70 based on HapMap data, listed in descending order first for r2 and then 

for p-value of the original SNP in the family study. 

3. Proxies in the COGA GWAS sample to proxy SNPs in the COGA family SNPs 

(in HapMap) to the remaining list of SNPs that are not in HapMap. Ranked in the 

same way as the above proxy SNPs, listed in descending order first for r2 and then 

for p-value of the original SNP in the family study. 

 

Both pruning thresholds of r2 < 0.50 and r2 < 0.25 created a set of 15 genes from the 

original 21 genes, primarily due to correlations among the ADH SNPs. Table 3.2 

summarizes the list of SNPs after pruning for LD based on a threshold of r2 < 0.50.  

Pruning resulted in a set of 22 SNPs from a threshold of r2<0.50 and 18 SNPs from a 

threshold of r2<0.25. SNPs selected at the threshold of r2 < 0.25 were the same as SNPs 

selected based on r2 < 0.50, with the exception of 4 SNPs that were pruned out based on 

this more stringent threshold: rs2235749 and rs6045819 in PDYN, rs7794886 in ACN9, 

and rs997917 in OPRK1.  

 

Table 3.2 Pruned set of candidate gene SNPs at r2 < 0.50. 
 

SNP Status Gene 

COGA 
family 
study  
p-value 

MAF 
Fam 

MAF 
COGA 

MAF 
SAGE 

Risk 
Allele 

rs10499934 In_sample ACN9 0.003 0.23 0.22 0.23 A 

rs12671685 In_sample ACN9 0.027 0.11 0.12 0.11 A 

rs7794886 In_sample ACN9 0.006 0.35 0.36 0.35 T 

rs4147531 In_sample ADH1A 0.007 0.43 0.46 0.47 C 

rs1229982 In_sample ADH1B 0.048 0.22 0.20 0.19 T 

rs1126672 In_sample ADH4 0.010 0.29 0.28 0.29 C 
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rs17115439 In_sample ANKK1 0.096 0.33 0.32 0.32 C 

rs680244 In_sample CHRNA5 0.114 0.42 0.41 0.42 G 

rs1799978 In_sample DRD2 0.168 0.06 0.05 0.05 G 

rs279858 In_sample GABRA2 0.010 0.38 0.42 0.42 A 

rs1897356 In_sample GABRB3 0.020 0.17 0.15 0.15 C 

rs16918941 In_sample OPRK1 0.023 0.06 0.06 0.07 G 

rs6985606 In_sample OPRK1 0.004 0.48 0.50 0.48 T 

rs997917 In_sample OPRK1 0.011 0.27 0.29 0.27 C 
rs1997794 In_sample PDYN 0.011 0.37 0.36 0.35 C 

rs2235749 In_sample PDYN 0.010 0.27 0.27 0.26 A 

rs6045819 In_sample PDYN 0.038 0.10 0.12 0.12 G 

rs11722288 In_sample TACR3 0.022 0.29 0.29 0.29 G 

rs3762894 In_sample ADH4 0.050 0.16 0.15 0.16 C 

rs1391175 
Use_proxy 
(rs13120165) GABRG1 0.036 0.06 0.03 0.03 A 

rs3097490 
Use_proxy 
(rs1571281) GABRG3 0.137 0.44 0.44 0.46 G 

rs324640 
Use_proxy 
(rs324649) CHRM2 0.038 0.43 0.42 0.42 T 

 
“Status” indicates whether or not the SNP was directly genotyped on the Illumina 1M SNP chip or 
a proxy SNP was used. The SNP numbers are SNPs from candidate gene studies, with proxy 
SNPs indicated as such in the “status” column. The COGA family-based association p-values 
from the previously published studies are listed. MAF Fam shows the minor allele frequency of 
the SNP in the COGA family-based candidate gene association sample. MAF COGA and MAF 
SAGE correspond to the MAF in the COGA and SAGE GWAS samples, respectively. The risk 
allele corresponds to the GWAS alleles matched by allele frequency to the risk allele in the 
family-based candidate gene association sample.    
 
 
Genetic sum scores 

Additive genetic risk scores were created using the --score option in PLINK v1.07 

(Purcell et al, 2007). This follows an additive model for risk variants, as described by 

Evans et al. (2009): 

𝑁 𝑟𝑖𝑠𝑘 =  
𝓍i
𝑛  

 
xi = # of risk alleles (0, 1, 2) at SNPi 

𝑛 = number of nonmissing genotypes 
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The number of risk alleles for each candidate gene SNP was added and then divided by 

the total number of non-missing genotypes to create a normalized allele count for each 

individual. Because odds ratios associated with the risk alleles varied across family-based 

analyses in COGA and replication studies, the additive score was created without 

weighting alleles by effect size. The risk allele in the SAGE and COGA samples was 

determined by matching by frequency with alleles that were associated with AD in the 

family sample. Minor allele frequencies across the family-based association sample, 

COGA GWAS sample, and SAGE GWAS sample were similar for each SNP (Table 3.2).  

 

Association analysis of candidate gene sum score with AD:   

The genetic sum scores were tested for association with DSM-IV AD in the case-control 

COGA and SAGE samples using logistic regression with sex as a covariate in COGA and 

sex, age quartiles, and study site as covariates in SAGE. The GWAS association models 

were selected to follow the methods used in the previously reported primary COGA and 

SAGE GWAS analyses (Bierut et al., 2010; Edenberg et al., 2010). In addition to testing 

the aggregate genetic sum scores for association with AD in the sample used for 

prediction, the individual SNPs contributing to the scores were each tested for association 

with AD. All candidate gene SNPs were tested for association before performing LD-

based pruning in order to assess the overall replication of the candidate gene SNPs in the 

independent COGA and SAGE GWAS samples. All association analyses were completed 

in the case-control samples using logistic regression using an additive model in PLINK 

v1.07. In order to assess replication across ancestries, and to account for the ethnicity 

differences in samples used in the previously reported candidate gene studies, association 
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analyses were performed in both the EA subset of the sample and the entire sample, 

which includes individuals of non-EA ancestry. Association analyses in the entire GWAS 

samples that included individuals of non-EA ancestry included molecularly derived 

principal components factor covariates, PC1 and PC2, distinguishing primarily between 

European and African ancestry. 

 

ROC curve analyses 

Discriminatory accuracy of genetic sum scores and family history was measured using 

ROC curve analysis in SPSS/PASW v17.0 (SPSS Inc., Chicago IL) with alcohol 

dependence as the binary outcome. 

The genetic sum scores and family history variables were used as the predictors. 

Additionally, in order to assess whether a panel of SNPs associated with AD in a high-

density family sample would be more informative in predicting risk for individuals with a 

positive family history of AD compared with individuals without a known family history, 

ROC analysis for the genetic sum score was also split by presence of family history. For 

example, in COGA, AUC was calculated for risk panels separately for those with a 

positive family history of alcohol dependence and those with a negative family history of 

alcohol dependence. In SAGE, analysis was split based on a variable created for positive 

family history or negative family history in the proband’s parents based on strict standard 

criteria.  

We assessed the value of combining information from the candidate gene panel 

with family history, as family history and the candidate gene sum scores were not 

correlated (Pearson’s r = 0.021, n = 1081 for the candidate gene sum scores pruned at 
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both r2 < 0.50 [p=0.490] and r2 < 0.25 [p=0.480] in COGA, Pearson’s r  = -0.038, n=1566 

for the candidate gene sum scores pruned at r2 < 0.50 [p=0.137] in SAGE, and Pearson’s r 

= -0.017, n=1566 for the candidate gene sum scores pruned at r2 < 0.25 [p=0.497] in 

SAGE). Predicted probabilities from logistic regression using genetic sum scores + 

family history information were calculated and then used as continuous predictors of 

alcohol dependence in order to determine whether or not genetic sum scores added to 

family history information in risk prediction.  

 

Results 

Family-based association analysis 

The re-run family-based association analyses resulted in p-values that matched those of 

the previously published studies for the majority of SNPs (Table 3.2). Several SNPs had 

different p-values in our repeat analysis due to differences in the sample inclusion criteria 

used in the COGA papers compared with our analysis. Because the exact individuals 

included was not explicitly reported in the studies, we did not have exact p-value matches 

in our analysis for several of the SNPs from the COGA family studies; however, p-values 

for the SNPs remained significant, with the exception of one SNP in ANKK1, for which 

our p-value was considerably different and not significant. This SNP was therefore not 

included in these analyses. For the two studies that used TRANSMIT and FBAT for 

association, Dick et al., 2004 and Wang et al., 2008, we used information about the risk 

allele obtained directly from Dr. Wang and matched the association results using 

PDTPHASE for several of the SNPs for Dr. Dick’s study. 
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ROC curve and logistic regression analysis  

ROC curve analysis showed that neither of the genetic sum scores created based on the 

pruning thresholds of r2 < 0.50 and r2 < 0.25 had an AUC estimate that reached statistical 

significance at p < 0.05 for discrimination of alcohol dependence status in the COGA or 

SAGE GWAS samples. The family history variables, however, did produce statistically 

significant AUCs. ROC curve analysis results for discriminative ability of family history 

compared with the genetic sum scores are summarized in Table 3.3 for the COGA 

GWAS sample. Estimates in the SAGE GWAS sample are summarized in Table 3.4. The 

distribution of genetic sum scores was similar in cases and controls in both the COGA 

and SAGE GWAS samples. Figure 3.2 displays the distributions of the candidate gene 

sum scores separately for cases and controls in the COGA GWAS sample.  

 

Table 3.3 AUC Estimates of Predictors in the COGA GWAS Sample 
 

Diagnostic Classifier 

  
Asymptotic 95% Confidence 
Interval 

AUC 
Std. 
Errora 

Asymptotic 
Sig.b Lower Bound Upper Bound 

Family history 0.686 0.016 < 0.001 0.654 0.718 
SCORE25 c 0.491 0.018 0.595 0.456 0.525 
SCORE50 d 0.498 0.018 0.915 0.463 0.533 

 
a. Under the nonparametric assumption 
b. Null hypothesis: true area = 0.5 
c. Genetic sum score based on pruned list of COGA variants at an r2 of 0.25 
d. Genetic sum score based on pruned list of COGA variants at an r2 of 0.50 
 

Table 3.4 AUC Estimates of Predictors in the SAGE GWAS Sample 
 

Diagnostic Classifier Area 
Std. 
Errora 

Asymptotic 
Sig.b 

Asymptotic 95% 
Confidence Interval 
Lower 
Bound 

Upper 
Bound 

SCORE25 c 0.492 0.015 0.583 0.462 0.521 
SCORE50 d 0.496 0.015 0.782 0.466 0.525 
History of alcoholism in mother-relaxed e 0.556 0.015 < 0.001 0.527 0.586 
History of alcoholism in mother-strict f 0.547 0.015 0.002 0.518 0.577 
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History of alcoholism in father-relaxed g 0.587 0.015 < 0.001 0.558 0.617 
History of alcoholism in father-strict h 0.582 0.015 < 0.001 0.552 0.612 
History of AD in either mother or father 
(relaxed) i 0.614 0.015 < 0.001 0.584 0.643 

 
a. Under the nonparametric assumption 
b. Null hypothesis: true area = 0.5 
c. Genetic sum score based on pruned list of COGA variants at an r2 of 0.25 
d. Genetic sum score based on pruned list of COGA variants at an r2 of 0.50 
e.- i. Family history predictors based on a binary absence or presence of parental family history of 
alcohol dependence.  
 
 

Figure 3.2 Distribution of genetic sum scores based on candidate 
gene SNPs pruned at r2<0.50 in cases and controls for AD in the 

COGA GWAS sample  
 

 
Summary of distributions: 
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 N Min Max Mean 
Std. 

Deviation 
Controls 454 0.25 0.705 0.45552 0.075985 
Cases 627 0.25 0.659 0.45517 0.078184 

 
COGA sample is independent of the COGA high-density family-based association 
sample. The figure shows the frequency of normalized allele counts in bins after sum 
scores were created by adding the number of risk alleles of SNPs associated with AD in 
candidate gene studies, and then dividing by the number of non-missing genotypes for 
each individual. The table summarizes the mean sum score, and range for the sum 
score separately for cases and controls. 
 

Logistic regression showed that none of the candidate gene sum scores created in 

COGA and SAGE was significantly associated with alcohol dependence (p = 0.940 for 

the candidate gene sum score pruned at r2 < 0.50, p = 0.753 for the score pruned at r2 < 

0.25 in the COGA GWAS sample, p = 0.627 for the candidate gene sum score pruned at 

r2 < 0.50, and p = 0.501 for the score pruned at r2 < 0.25 in the SAGE GWAS sample). 

Many of the individual SNPs contributing to the genetic sum scores were not 

significantly associated with alcohol dependence. Of the 22-SNP panel pruned at r2 < 

0.50, two of the SNPs met a nominal threshold of p < 0.10 in the independent European 

American subset of the COGA sample, one in the ADH4 gene and one in the ANKK1 

gene. Two SNPs, one in the TACR3 gene and one in the GABRB3 gene, met this 

threshold in the SAGE GWAS European American sample, and one SNP in the GABRG1 

gene had a p-value < 0.05 in the sample. In the entire COGA GWAS sample including 

individuals of African American and other ancestries, one SNP in the DRD2 gene had a 

p-value < 0.05 and the same ADH4 SNP nominally associated with AD in the EA sample 

had a p-value < 0.10 in the COGA sample. In the entire SAGE GWAS sample, the same 

GABRB3 and GABRG1 SNPs met a threshold of p < 0.05. The p-values resulting from 

logistic regression analyses for individual SNPs contributing to the candidate gene sum 
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score panels post-LD-based pruning are shown in Table 3.5. The expanded list of all 

SNPs prior to pruning based on LD included a greater number of SNPs that met the 

nominal replication p-values of 0.05 and 0.10. Table 3.6 shows SNP association results of 

all SNPs before performing LD-based pruning. 

 

 
Table 3.5 The association of individual SNPs contributing to 

candidate gene sum scores in COGA and in SAGE GWAS samples. 
 

CHR SNP Gene 
P-val 
COGA EA 

P-val 
COGA All 

P-val 
SAGE EA 

P-val 
SAGE All 

4 rs13120165 GABRG1 0.104 0.842 0.388 0.569 
4 rs279858 GABRG1 0.681 0.429 **0.024 **0.017 
4 rs1126672 ADH4 *0.073 *0.069 0.922 0.449 
4 rs3762894 ADH4 0.510 0.128 0.592 0.501 
4 rs4147531 ADH1A 0.571 0.940 0.806 0.508 
4 rs1229982 ADH1B 0.104 0.337 0.604 0.594 
4 rs11722288 TACR3 0.121 0.148 *0.061 0.266 
7 rs10499934 ACN9 0.859 0.385 0.224 0.412 
7 rs7794886 ACN9 0.941 0.476 0.590 0.512 
7 rs12671685 ACN9 0.746 0.452 0.252 0.307 
7 rs324649 CHRM2 0.868 0.610 0.429 0.121 
8 rs997917 OPRK1 0.937 0.989 0.956 0.954 
8 rs16918941 OPRK1 0.516 0.712 0.773 0.499 
8 rs6985606 OPRK1 0.495 0.439 0.851 0.522 

11 rs17115439 ANKK1 *0.077 0.238 0.964 0.825 
11 rs1799978 DRD2 0.133 **0.040 0.239 0.480 
15 rs1897356 GABRB3 0.570 0.847 *0.064 **0.048 
15 rs1571281 GABRG3 0.296 0.749 0.926 0.905 
15 rs680244 CHRNA5 0.779 0.923 0.909 0.239 
20 rs2235749 PDYN 0.696 0.680 0.513 0.381 
20 rs6045819 PDYN 0.840 0.687 0.652 0.535 
20 rs1997794 PDYN 0.255 0.655 0.470 0.833 

 
P-values are shown for logistic regression results of each individual SNP for association 
with AD. P-val COGA_EA indicates results of association analyses in the European 
American subset of the COGA GWAS sample that is independent of the COGA high-
density family-based association sample. P-val SAGE_EA reflects association results in 
the FSCD and COGEND portion of the SAGE European American sample. COGA_All 
and SAGE_All show results in samples that are included in the EA portion of the COGA 
high-density family-based association sample, as well as independent individuals of 
other ancestries. ** SNPs with p < 0.05 for association with AD; * SNPs with p < 0.10 
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Table 3.6 Results of logistic regression for AD for all SNPs 
associated with AD in candidate gene family-based association 

studies 
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Family history expanded results 
 
ROC curve analysis based on presence or absence of family history 

ROC curve analyses stratified by presence of family history of AD did not result in 

significant AUCs or differences in discriminatory accuracy of genetic sum scores in the 

positive or negative family history groups. Tables 3.7a and 3.7b show the AUC results 

and level of significance for the genetic sum scores in discriminating between cases and 

controls by presence or absence of family history in the COGA and SAGE GWAS 

datasets.  

 
Table 3.7a COGA GWAS Sample 

 
Family History Classifier AUC p-value * 95% CI 
No 24 SNPs (r2 threshold = 0.50) 0.521 0.4 0.472, 0.571 
  18 SNPs (r2 threshold = 0.25) 0.517 0.493 0.468, 0.567 
Yes 24 SNPs (r2 threshold = 0.50) 0.454 0.109 0.4, 0.508 
  18 SNPs (r2 threshold = 0.25) 0.439 0.036 0.385, 0.494 

   
*null hypothesis: AUC=0.50 

 
 

Table 3.7b SAGE GWAS Sample 
 

Family History Classifier AUC p-value * 95% CI 
No 24 SNPs (r2 threshold = 0.50) 0.497 0.864 0.462, 0.535 
  18 SNPs (r2 threshold = 0.25) 0.492 0.648 0.457, 0.527 
Yes 24 SNPs (r2 threshold = 0.50) 0.520 0.553 0.453, 0.586 
  18 SNPs (r2 threshold = 0.25) 0.506 0.857 0.439, 0.573 

 
  *null hypothesis: AUC=0.50 

 
A “yes” for family history in the SAGE GWAS sample means that either the participant’s 
mother or father has a personal history of AD, by strict standard criteria and a “no” 
means that neither the participant’s mother nor father has a personal history of AD by 
strict standard criteria. 
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 Analyses exploring the combination of family history and genetic sum scores 

showed nominal, but not significant, improvements in discriminatory accuracy. For 

example, we found that the AUC for family history increased nominally from 0.686 to 

0.690 in COGA after adding the candidate gene sum score pruned at r2<0.50. Table 3.7 

summarizes the AUC estimates for the original family history binary variable, the family 

history ordinal variables, and the family history variables plus the genetic sums scores. A 

test of the statistical difference for the family history alone vs. family history plus 

candidate gene sum score pruned at r2<0.50 performed using DeLong’s method for 

comparing ROC curves using the pROC package in R 2.10.2 showed that the difference 

between the two ROC curves was not significant (z = 0.4508, p = 0.6521).  

 

Table 3.7 Summary of expanded family history analyses  

Predictor AUC  AUC FH+SCORE50 
AUC 

FH+SCORE25 

Results in the COGA GWAS sample independent of the family sample: 
SCORE50 = SNPs with r2 < 0.50 0.498 - - 
SCORE25 = SNPs with r2 < 0.25 0.491 - - 

    

Original FH binary variable 0.686 0.690 0.693 
"No": N = 536 

   

"Yes": N = 545 (any FH) 

 

Total N = 1081       

   

 Ordinal FH var based on relaxed 
criteria 0.621 0.620 0.624 
"No": N = 850 (maternal and paternal Hx only) 

 

"1 parent": N = 147  

   

"Both parents": N = 24 

   

Total N = 1021       

    

Ordinal FH var based on strict criteria 0.618 0.617 0.621 
"No": N = 850 

   

"1 parent": N = 141 

   

"Both parents": N = 22 

   

Total N = 1013       
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Results in the SAGE sample independent of the COGA sample:   
SCORE50 = SNPs with r2 < 0.50 0.496 - - 
SCORE25 = SNPs with r2 < 0.25 0.492 - - 

    

Original FH binary variable 0.614 0.614 0.618 
"No": N = 1246 

   

"Yes": N = 356 (based on relaxed criteria) 

  

Total N = 1602       

    

Ordinal FH var based on relaxed 
criteria 0.617 0.616 0.620 
"No": N = 1246 

   

"1 parent": N = 309 

   

"Both parents": N = 47 

   

Total N = 1602       

    

Ordinal FH var based on strict criteria 0.614 0.615 0.617 
"No": N = 1246 

   

"1 parent": N = 303 

   

"Both parents": N = 30 

   

Total N = 1579       
The AUC estimates of the family history variables alone and family history (FH) with the 
addition of genetic sum scores are shown. SCORE50 refers to the genetic sum scores 
created based on variants pruned at r2 < 0.50 and SCORE25 indicates a score based on 
variants pruned at r2 < 0.25. The original AUC measures for the genetic sum scores are 
included in the table for comparison purposes.  
 

Discussion 

This study aimed to evaluate the clinical validity of genetic variants that have been 

associated with AD by exploring the aggregate effect of associated SNPs on risk 

prediction for AD. Prior studies on the clinical use of genetic information in predicting 

risk for other complex disorders have investigated the effect of genetic sum scores in risk 

assessment and shown significant, but small, AUCs. In our study, genetic sum scores 

were created based on results from SNPs that were associated with AD in family-based 

candidate gene studies. ROC curve analysis was used to assess the ability of the sum 

scores to classify cases and controls for AD. Results did not show significant AUCs for 
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the candidate gene sum scores, suggesting that these sum scores are not predicting better 

than chance. The individual variants contributing to the sum scores did not yield 

significant results in the independent samples in which discriminative ability was 

assessed. Because of the lack of replication for individual SNPs and sum score 

associations with AD, AUC estimates were not significant. Family history, on the other 

hand, did have significant discriminative ability for AD. 

This assessment of discriminatory accuracy shows that these panels of SNPs 

currently have limited clinical validity. One reason that many of the candidate gene SNPs 

did not replicate in the independent samples used to assess for clinical validity could be 

due to heterogeneity across samples; different genetic variants may contribute to risk in 

different populations containing varying subsets of alcohol-dependent individuals. 

Therefore, genetic risk could be unique to the samples used in these association analyses. 

For example, several variants have been found to have stronger association with AD in 

individuals with co-occurring drug dependence. Dick et al. showed that CHRM2 is 

associated with a form of AD that is comorbid with drug dependence, but not with AD 

alone (2007a). Individuals with this comorbidity were also found to have more severe 

alcohol problems. In another case, Foroud et al. found that SNPs in TACR3 that were 

associated with AD in EA COGA families had the strongest association in individuals 

with more severe AD and comorbid cocaine dependence (2008). Furthermore, Agrawal et 

al. showed that GABRA2 is associated with AD only in individuals with comorbid drug 

dependence. When these individuals were removed from the analysis, no association 

remained (2006). A next step in developing genetic risk models for AD would be to 

assess for prediction for different subtypes of AD. SNPs from primary analyses in the 
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family-based portion of the study may not have replicated in independent COGA and 

SAGE GWAS individuals due to sampling differences between the GWAS sample and 

the family-based association sample. One possibility is that the high-density family-based 

sample may be more severely affected than a case-control sample and therefore show 

differences in underlying genetic etiology. There was not a significant difference in mean 

DSM-IV symptom count for AD between the COGA high-density family-based sample, 

(mean=5.33, SD=1.82), and the SAGE (mean=4.87, SD=1.51) or COGA GWAS 

(mean=5.45, SD=1.42) samples. Although the difference in symptom count between the 

two samples was not significant, there is a nominal difference in symptom count; larger 

sample sizes may have more power to detect a difference between the two samples. 

Furthermore, severity of alcohol dependence may differ in ways beyond criterion count. 

For example, the severity of the individual symptoms themselves may differ between 

individuals with the same symptom count. This difference may manifest in ways beyond 

individual symptom count, such as the extent of tolerance and withdrawal, duration of 

symptoms, and number of episodes.  

Many of the candidate gene SNPs used to compute the genetic sum score in the 

GWAS sample displayed allelic effects that were in the opposite direction. Prior literature 

has reported significant association in both directions for the same genetic variant in 

different samples. For some variants, the direction of effect for some loci could be 

different in different samples due to heterogeneity across samples. Differences in 

population structure may correspond to allele frequency differences across samples so 

that different variants are in LD with the causal variant in distinct samples (Zuo et al., 

2012). Differences in phenotype between the samples may mean that alleles could 
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increase risk specifically for one phenotype in one sample, and not increase risk for a 

different phenotype in another sample. For example, the GABRA2 gene has been 

associated with AD in different samples, but the allele conferring risk is different in 

different samples – in some, the major allele was associated with increased AD and in 

others, the minor homologous allele was associated. Further investigation suggests that 

the risk allele for GABRA2 may vary across the studies due to differences in a co-

occurring phenotype with AD. Trait anxiety, or harm avoidance based on the 

Tridimensional Personality Questionnaire (TPQ), has been suggested to have an 

influence on whether a GABRA2 allele would increase risk for AD, with the major 

haplotype associated with AD in individuals with alcohol dependence who have high trait 

anxiety, and the minor haplotype associated with AD in individuals with low trait 

anxiety, and intermediate frequency haplotypes to be associated with unaffected status 

(Enoch, 2008; Enoch et al., 2006). In the COGA high-density family-based association 

sample, individuals with alcohol dependence have been shown to have higher trait 

anxiety than individuals without alcohol dependence (Ducci et al., 2007; Enoch, 2008). 

These results show that family history is a better classifier than current 

conceptualizations of SNP panels, based on candidate genes for AD. Family history is 

currently likely a better predictor than this panel of SNPs because it accounts for more of 

the latent genetic factors contributing to AD, whereas the contribution to risk of the panel 

of SNPs is less clear. Family history also contains non-genetic predictors, which could 

account for a significant proportion of the risk as well, as family history could influence 

to some extent the environment that an individual is exposed to during development. 

Family studies show some evidence for influence of parental alcohol dependence on risk 
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for substance use disorders in children, or cultural transmission (Koopmans and 

Boomsma, 1996; Newlin et al., 2000).  Furthermore, the etiology of AD may be different 

for one family versus another. Therefore, risk prediction based on one individual’s family 

history may encompass genetic factors that are more specific to that individual than a 

general panel of SNPs, which may not explain risk for the particular subgroup to which 

that individual belongs. The nominal increase of the AUC after adding candidate gene 

SNP scores that are not correlated with family history to the family history variables 

suggests that variants associated with AD may provide additional risk information to 

family history alone. 

Importantly, before assessment on clinical validity is made, the contribution of 

genetic sum scores, rather than individual associated SNPs, must be determined. Because 

variants contributing to AD have small effect sizes, and the outcome used in the 

association studies is a dichotomous diagnosis rather than a continuous outcome, larger 

sample sizes are needed for increased power to detect causal variants that replicate across 

studies (Bierut et al., 2010). GWA studies have shown replication of many of the SNPs 

associated with AD in the COGA candidate gene studies (Edenberg et al., 2010; Bierut et 

al., 2010), the results of which are shown in Table 3.6; however, in an effort to create 

SNPs that capture unique information by pruning them based on LD, some of the 

replicated SNPs were not included in the model. SNPs that were included represented 

ones with the lowest p-values from the family-based candidate gene association studies, 

and ones that are captured on the current GWAS arrays. To explore the effect that having 

more replicated variants, despite correlation between the variants, on a genetic sum 

score’s predictive accuracy, we created an expanded candidate gene sum score without 
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pruning. This expanded score did not have a significant AUC (AUC = 0.493, p = 0.642); 

the AUC was not significantly different from the two candidate gene sum scores pruned 

at r2 < 0.50 (AUC = 0.498 in COGA and 0.496 in SAGE) and r2 < 0.25 (AUC = 0.491 in 

COGA and 0.492 in SAGE). Continued investigation of the genetics of AD will further 

refine the prediction model to include SNPs that have replicated and that capture unique 

associations.  

In the COGA and SAGE GWAS samples, previous analyses have demonstrated 

that the missense SNP rs1229984 in the ADH1B gene encoding alcohol dehydrogenase 

was associated with AD at p < 5x10-8 (Bierut et al., 2012). This variant, previously well-

recognized for its protective influence on alcoholism in Asian populations, has also been 

found to exert an influence on alcoholism risk in European Americans and African 

Americans. However, it is fairly uncommon in non-Asian samples (<5%) and is poorly 

captured by content on commercially available GWAS platforms such as the Illumina 

platform used in the COGA and SAGE GWAS samples, due to lack of LD with 

neighboring SNPs. We assessed the discriminatory accuracy of this ADH1B SNP for AD 

and found that it alone has an AUC of 0.538 (p = 7.58 x 10-4) in COGA. The inclusion of 

this SNP in the candidate gene sum score increased the AUC from 0.498 to 0.503, but 

this AUC was not significant, presumably partly due to the very low allele frequency in 

this population. This suggests that including known variants that replicate in the 

validation sample used for prediction could have a greater AUC, but a panel of several 

dozen SNPs may still include false positives in addition to true findings of small effect. 

Noise from null loci could outweigh effects from true loci in a small panel of SNPs, 
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which would decrease the predictive accuracy of the aggregate SNP panel. Expanding the 

panel to include additional replicated true variants could increase the AUC further.   

The maximum AUC for a risk model containing only genetic variants is 

constrained by the heritability of the trait, as well as the disease prevalence in a 

population (Wray et al., 2010). As heritability of a disease goes down and as prevalence 

goes up, the maximum AUC goes down (Wray et al., 2010). This stresses the importance 

of taking into account other factors contributing to the variability in AD for risk 

prediction, particularly since AD is a fairly prevalent disorder. Additional measures to 

increase power may include reducing heterogeneity by refining the phenotype used as the 

outcome in the association study (Bierut et al., 2010). Large-scale meta-analyses, along 

with expanded individual association studies for AD, may improve the detection of 

disease variants. 

We do not yet have enough information about the specific variants contributing to 

AD to use genetic data for clinical risk prediction. Family history is currently a better 

predictor of alcohol dependence, though a variant that was associated in the GWAS 

sample used for prediction was shown to have a significant AUC. This study suggests 

that expanding the number of replicated variants associated with AD would account for a 

greater portion of the genetic variance for AD and therefore improve risk prediction. 

Because AD also has a substantial unique environmental etiology in addition to genetic, a 

prediction tool based on genetic information alone would not have the highest AUC; the 

addition of environmental factors would account for more of the variability in AD and 

therefore a model that takes into consideration both could have better predictive ability. 

Data simulations that we have conducted show that adding environmental effects could 
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potentially raise the predictive accuracy to an AUC of 0.95 (Maher et al., in preparation). 

While genetic information may be of limited clinical validity at the moment, as we 

continue to identify genes successfully, and incorporate information from both genetic 

and environmental risk factors, there is potential for future clinical validity.  
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Chapter 4: Risk prediction using information from genome‐wide 

association studies for AD 

 
 

Abstract 

Genome-wide association studies (GWAS) of alcohol dependence (AD) have reported 

numerous variants. The clinical validity of these genetic variants to discriminate between 

cases and controls for DSM-IV AD has not been reported. The Collaborative Study on 

the Genetics of Alcoholism (COGA) and the Study of Addiction: Genes and Environment 

(SAGE) GWAS samples were used to examine the aggregate impact of multiple genetic 

variants with small effect sizes on clinical risk prediction for AD using receiver operating 

characteristic (ROC) curve analysis. In these analyses, subsets of the COGA and SAGE 

samples were used as gene discovery and validation samples in two sets of analyses, in 

which genetic sum scores were created by adding risk alleles of associated SNPs in 

discovery samples and then assessed for their ability to discriminate between cases and 

controls in independent validation samples. SNPs from GWAS analysis that met nominal 

association levels in two discovery subsets and SNPs from GWAS analysis that met 

varying “significance” criteria based on p-value thresholds from 0.0001 to 0.5 were 

assessed separately for predictive accuracy. ROC curve analysis using scores created 

from semi-replicated SNPs did not result in significant discriminatory ability for the 

genetic sum scores, suggesting that the SNPs are not predicting better than chance. SNPs 
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that met less stringent p-value thresholds of 0.01 to 0.50 in GWAS analyses did yield 

significant area under the ROC curve (AUC) estimates, ranging from mean AUC 

estimates of 0.549 for SNPs with p < 0.01 to 0.565 for SNPs with p < 0.50. This study 

shows that these SNPs from GWAS analyses account for some of the risk in AD, but 

have limited clinical validity. This illustrates the need for further development of 

prediction panels that incorporate replicated variants contributing to risk for AD. 
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Introduction 

A number of genome-wide association studies have been performed for alcohol 

dependence (AD) and alcohol-related phenotypes. (Treutlein and Rietschel, 2011b; 

Treutlein et al., 2009; Frank et al., 2012; Bierut et al., 2010; Edenberg et al., 2010; 

Agrawal et al., 2011; Heath et al., 2011; Lind et al., 2010; Schumann et al., 2011; Wang 

et al., 2012; Wang et al., 2011; Zuo et al., 2012; Kendler et al., 2011; Zuo et al., 2011). 

Genome-wide associations studies (GWAS) have the benefit of a hypothesis-free 

approach to finding variants associated with common diseases without prior information 

on putative chromosomal regions or genes. The studies could provide coverage of 

common markers across the genome based on correlation due to linkage disequilibrium 

(LD) between loci (Visscher et al., 2012). Prior to the technical feasibility of the GWAS 

era, Risch and Merikangas projected that using association studies to study common 

variants that contribute to common diseases would be more powerful and require fewer 

markers and sample sizes to detect small effects than using linkage studies, which are 

more suited to detecting loci with larger effects sizes (Risch and Merikangas, 1996).  

For alcohol dependence, many of the reported genome-wide association studies to 

date have reported variants that did not meet the genome-wide significance threshold of p 

< 5x108 based on Bonferroni correction for one million tests for a GWAS using one 

million markers, though many have shown variants that were associated with low p-

values (p < 1x10-5). Two studies have reported genome-wide significant findings for 

variants that have been replicated in other samples (Zuo et al., 2012; Lind et al., 2010). 

The results of GWA studies for alcohol dependence have supported previous candidate 
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gene associations and implicated many new genes and pathways in risk for alcohol-

related phenotypes.  

Among the few studies that have reported genome-wide significant findings, two 

studies found significant associations of the alcohol dehydrogenase (ADH) genes at this 

threshold. Frank et al. (2011) found rs1789891, located between the ADH1B and ADH1C 

genes, to be associated with AD in a treatment-based sample of 1333 male individuals 

with severe AD and 2168 controls, all of German descent. Bierut et al. (2012) reported 

genome-wide support for the low-frequency rs1229984 SNP in the ADH1B gene in the 

SAGE GWAS sample, totaling 2298 individuals with AD and 3334 controls without 

dependence, and including individuals of both European and African ancestry. This study 

provided new support for association of the ADH1B variant that was previously limited to 

individuals of East Asian descent.  

In the first reported GWAS of AD, Treutlein et al. (Treutlein et al., 2009)  

performed a case-control study in which cases were recruited from treatment centers in 

Germany. They further assessed their top results in a follow-up sample and found 

evidence for two correlated SNPs in the 3’ flanking region of the peroxisomal trans-2-

enoyl-CoA reductase gene (PECR) located in the 2q35 region. Regions on chromosome 

2q have previously been implicated in linkage studies of alcohol-related phenotypes 

(Schuckit et al., 2001; Nurnberger et al., 2001; Dick et al., 2010). Thus, this finding 

provided additional support for possible involvement of genes in this region for alcohol 

dependence. Primary analyses in the COGA GWAS sample did not result in SNPs that 

met genome-wide significance, but convergent evidence from the case-control GWAS 

sample, COGA family-based association sample, and gene expression analyses supported 
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association of a group of chromosome 11 genes (SLC22A18, PHLDA2, NAP1L4, 

SNORA54, CARS, and OSBPL5), particularly for early-onset AD (Edenberg et al., 2010). 

The primary SAGE GWAS did not result in genome-wide significant association with 

AD, but showed modest replication for the previously implicated GABRA2 gene; all 

GABRA2 SNPs were nominally associated at p < 0.05 in the SAGE sample (Bierut et al., 

2010). In meta-analysis of an Australian and Dutch sample, the top hit was the 

semaphorin 3E gene (SEMA3E), which is involved in synaptic specificity of motor 

circuits in mice. Gene network analyses revealed evidence for ion channel and cell 

adhesion molecule genes in this study (Lind et al., 2010). Lind et al. also found SNPs that 

met genome-wide significance for association with comorbid alcohol/nicotine 

dependence in MARK1, which is involved in phosphorylation of microtubule-associated 

proteins, DDX6, which encodes a putative RNA helicase, and KIAA1409, which is 

thought to be part of a sodium channel complex. The KIAA0040 gene was associated with 

AD in both Zuo et al.’s study (2012) and Wang et al.’s meta-analysis (2011). Wang et al. 

also found an association between AD and THSD7B and NRD1, and found replication of 

PKNOX2.  Studies of quantitative traits such as alcohol consumption have identified a 

genome-wide significant association with the AUTS2 gene (Schumann et al., 2011) and 

evidence of association for the TMEM108 and ANKS1A genes (Heath et al., 2011). In a 

study of an alcohol factor score based on DSM-like symptoms, Kendler et al. (2011) 

found the most significant SNP to be KCNMA1, AKAP9, and PIGG in the EA sample and 

CEACAM6, KCNQ5, SLC35B4, and MGLL in the AA sample. They also found support 

for previously associated candidate genes for ADH1C, NFKB1, and ANKK1 in the EA 

sample and ADH5, POMC, and CHRM2 in the AA sample (Kendler et al., 2011). 
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ROC curve analyses of prior complex diseases have shown modest predictive 

ability of genetic sum scores (Jostins and Barrett, 2011). Several studies have shown that 

when a greater number of genetic variants meeting more liberal p-value thresholds were 

included in an aggregate genetic sum score, then the score accounted for more of the 

variability in phenotype compared with a score consisting of fewer variants meeting more 

stringent p-value thresholds. Purcell et al. showed in the International Schizophrenia 

Consortium sample of 3,322 cases with schizophrenia and 3,587 controls that thousands 

of variants associated at less stringent p-value thresholds of p <0.10, p <0.20, p <0.30, p 

<0.40, and p <0.50, accounted for more of the variance in schizophrenia. Of the different 

p-value threshold scores, the scores created from SNPs meeting increasingly large p-

value thresholds accounted for more of the variance in schizophrenia. A threshold of p < 

0.50 explained the most phenotypic variance  – about 3% – in schizophrenia in an 

independent target sample (Purcell et al., 2009). This corresponds to an AUC of 0.65 in 

discriminating case-control status for schizophrenia (Jostins and Barrett, 2011). The score 

was also found to explain 1-2% of the variance in bipolar disorder, but did not account 

for a significant proportion of phenotypic variance in non-psychiatric disorders, 

supporting a shared polygenic component between schizophrenia and bipolar disorder 

(Purcell et al., 2009). Genetic risk profile studies for depression and anxiety showed 

similar polygenic models. Demirkan et al. (2011) used results from the Genetic 

Association Information Network (GAIN) major depressive disorder (MDD) GWA study 

to select SNPs meeting varying p-value thresholds ranging from p < 0.00001 with 

incremental threshold changes including p < 0.0001, 0.001, 0.01, 0.1, and 0.2, up until p 

< 1.0. They created genetic sum scores using these SNPs and tested them for association 
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with MDD in independent samples. Risk scores associated with MDD at p < 0.1 to p < 

0.4 in the GAIN-MDD discovery sample explained significantly 0.65% of the variance in 

MDD in an independent sample. They found that risk scores created based on SNPs 

meeting p<0.1 to p<1.0 in the GAIN-MDD discovery sample explained 1-2.1% of the 

variance in anxiety in an independent sample, with increasing variance explained with 

each incremental increase in the p-value threshold used to select the discovery SNPs 

(Demirkan et al., 2011).  

The method of selecting variants based on less stringent thresholds has also been 

used previously to assess risk prediction for the disease cohorts in the Wellcome Trust 

Case Control Consortium (WTCCC), many of which had previously associated variants 

(Evans et al., 2009).  Evans et al. examined the predictive ability of genome-wide 

information for the 7 common diseases in the WTCCC: bipolar disorder, coronary heart 

disease, hypertension, Crohn’s disease, rheumatoid arthritis, type I diabetes, and type II 

diabetes. Because the effect sizes of alleles contributing to these complex diseases are 

often in the range of 1.1-2, and are therefore likely to have individually small effects on 

prediction, they created genetic sum scores composed of many SNPs at liberal 

significance thresholds. They found that many of the genome-wide scores produced 

significant AUCs, with an AUC of 0.549 for bipolar disorder to an AUC of 0.784 for type 

I diabetes. AUCs were highest for disorders with known genetic regions of larger effect, 

such as the involvement of variants in the MHC region in type I diabetes and Crohn’s 

disease. Genome-wide scores added to the discriminatory accuracy of known variants, 

particularly for diseases in which the effects of known variants were smaller.  Scores 

based on SNPs meeting more liberal thresholds had the best discriminatory accuracy for 
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disease that did not have known large-effect loci, such as bipolar disorder, coronary heart 

disease, hypertension, and type II diabetes. For some conditions, the AUC peaked at 

SNPs selected at p < 0.50, and for others, the AUC was higher at p < 0.80. This suggests 

that more liberal thresholds capture more of the polygenic effects, but as p-value 

thresholds continue to increase, the polygenic scores may be too diluted by null effects to 

have increasing discriminatory accuracy (Evans et al., 2009).  

These studies show that although effect sizes of common SNPs are individually 

too small to meet genome-wide significance thresholds, selecting SNPs at more liberal p-

value thresholds would include a greater proportion of true loci that could in aggregate 

account for variance in a complex polygenic trait, despite noise from null loci. Most of 

the genetic variants contributing to AD have small effect sizes. A genetic sum score 

composed of many genetic variants at liberal thresholds would provide an aggregate 

predictor without necessitating knowledge of specific true loci. This study explored the 

cumulative impact of multiple genetic variants with small effect sizes from genome-wide 

association studies, with a focus on risk prediction, in order to provide a clinical 

assessment of genetic contributions from GWAS data to AD.  

We used results from the Collaborative Study on the Genetics of Alcoholism (COGA) 

and the Study of Addiction: Genes and Addiction (SAGE) GWAS samples to capture 

genetic effects on alcohol dependence in order to predict risk in independent sample 

subsets. We first created genetic sum scores created based on semi-replicated variants 

that met nominal p-value thresholds in two separate halves of the SAGE sample, with the 

idea that SNPs that had replicated may be more likely to represent “true positives” and 

enhance predictive ability of genetic sum scores composed of these replicated SNPs. We 
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then assessed genetic sum scores based on variants that met varying p-value thresholds. 

We combined the COGA and SAGE GWAS samples and then split the combined sample 

randomly in half. One half of the combined sample was used as a discovery sample and 

the other half a validation sample. We created genetic sum scores based on SNPs that met 

a range of p-value thresholds from p < 0.0001 to p < 0.50 in the discovery sample and 

then assessed for prediction in the validation sample, testing that using SNPs meeting less 

stringent p-value thresholds may better detect variants of small effect.  

Materials and methods 

Sample and measures 
 
COGA GWAS sample 

The Collaborative Study on the Genetics of Alcoholism (COGA) is a large-scale multi-

center family study developed to identify genes that contribute to alcohol-related 

outcomes. The sample consists of families containing probands meeting both DSM-IIIR 

and Feighner criteria for alcohol dependence who were ascertained from outpatient and 

inpatient alcohol treatment centers at six sites across the United States. Families reported 

information about family history and were interviewed using a poly-diagnostic 

instrument, the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA), 

which assesses Feighner, DSM-IIIR, DSM-IV, and ICD-10 criteria. A case-control 

sample of 1945 phenotyped subjects was formed by COGA for a genome-wide 

association study (GWAS). Cases had a lifetime diagnosis of alcohol dependence by 

DSM-IV criteria. Controls reported consuming alcohol but did not have a diagnosis of 

alcohol dependence or abuse by any of the diagnostic criteria assessed by SSAGA 
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(Feighner, DSM-IIIR, DSM-IV, and ICD-10) or DSM-IIIR or DSM-IV criteria for 

cocaine, marijuana, opioids, sedatives, or stimulants. They could not share a known 

common ancestor with a case and were preferentially selected to be above the age of 25 

years.   

Genotyping was completed using the Illumina Human 1M DNA Analysis 

BeadChip at the Center for Inherited Disease Research (CIDR). DNA was extracted from 

blood and lympoblastoid cell lines. The Ilumina Infinium II assay protocol was followed 

with hybridization to Illumina Human 1M BeadChips (Illumina, San Diego, CA). A total 

of 1,069,796 SNPs were used, with a mean spacing of 2.4 kb (Edenberg et al., 2010). The 

dataset had a total of 1,041,465 SNPs with genotypes that had Gencall quality scores of 

0.15 or higher. Samples with genotypes for less than 98% of SNPs were removed. All 

samples were screened for cryptic relatedness and population stratification. Principal 

components analysis clustered samples along HapMap reference panels. Principal 

components-derived covariates were created to separate the sample into individuals of 

European American and African American descent. Additional details about the quality 

control steps taken to process the genotypic information in the COGA dataset can be 

found in (Edenberg et al., 2010). 

 

SAGE GWAS sample 

The Study of Addiction: Genes and Environment (SAGE) is part of the Gene 

Environment Association Studies (GENEVA) initiative of the NHGRI to identify genetic 

contributions to addiction through large-scale genome-wide association studies of cases 

and controls. The SAGE sample consists of 4,121 cases and unrelated controls from 
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subsets of three large studies on addiction: the Family Study of Cocaine Dependence 

(FSCD), the Collaborative Genetic Study of Nicotine Dependence (COGEND), and 

COGA. Individuals from FSCD with cocaine dependence were recruited from treatment 

units for chemical dependency in the St. Louis metropolitan area. Age, race, sex, and 

residency-matched controls were recruited through the community-based Missouri 

Family Registry. The COGEND study is a community-based study of participants 

recruited in St. Louis, MO and Detroit, MI. Although the SAGE sample consists of three 

samples that were ascertained differently, cases in SAGE are defined as having DSM-IV 

lifetime diagnosis of alcohol dependence, and all participants in SAGE were assessed 

using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA). 

Controls were exposed to alcohol. Some controls met criteria for nicotine dependence 

based on the Fagerström Test for nicotine dependence, but none met criteria for a DSM-

IV lifetime dependence diagnosis for alcohol, marijuana, cocaine, opiates or other drug. 

 Parallel to the COGA GWAS, genotyping was completed using the Illumina 

Human 1Mv1_C DNA Analysis BeadChip and the Ilumina Infinium II assay protocol 

(Illumina, San Diego, USA) at the Center for Inherited Disease Research (CIDR). The 

quality control process involved checking for Mendelian errors, batch effects, cryptic 

relatedness, potential chromosomal anomalies, and deviation from Hardy Weinberg 

equilibrium. Additional details about the sample can be found in the primary SAGE 

GWAS manuscript by Bierut et al. (Bierut et al., 2010).  

Data analysis 
 
Analyses overview 
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Figure 4.1 illustrates the overview of the analyses, which were broken down into two 

parts:  

Part I, which evaluated panels of SNPs that have been replicated in two samples, and Part 

II, which assessed the discriminatory accuracy of SNPs meeting varying significance 

thresholds in genome-wide association analyses.  

 

Figure 4.1 Study overview 
 

 



www.manaraa.com

 
 

 
 
 

97 

 

 

Part I. SAGE GWAS SNP panel with replication 

Sample selection and association analyses 

In order to select an independent gene-finding sample, the FSCD and COGEND subset of 

the SAGE GWAS sample without COGA individuals was selected for this part of the 

study. This selected subset was split randomly in half. Association analysis was 

performed in each half of the sample subset using logistic regression with covariates for 

sex, age, and the FSCD and COGEND study site variables. 
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Because removing COGA individuals and then splitting the sample in half 

substantially reduced the SAGE sample size, all analyses were completed in the entire 

sample including individuals of different ancestries, as well as in the subset of European 

American individuals. For association analysis in the entire sample, molecularly derived 

principal components factors for ethnicity, PC1 and PC2, were added as covariates. 

Figure 4.1 summarizes the number of individuals included in the analyses separately for 

the entire sample and for the EA sample. The entire SAGE sample consisted of 2484 

individuals (1450 controls and 1034 cases). Of the entire SAGE GWAS sample, 1425 

individuals who were part of COGA were removed from the entire SAGE sample. The 

remaining FSCD and COGEND subset of the entire SAGE sample consisted of 1220 

individuals for one half of the subset and 1207 individuals for the other half of the subset. 

The SAGE GWAS European American sample contained 801 individuals for each half of 

the subset after removing COGA individuals and then performing a 50% split. 

 

SNP selection and pruning 

SNPs that met a p-value threshold of p < 0.001 in the first half of the SAGE sample and a 

threshold of p < 0.05 in the second half of the sample, and vice versa, were selected for 

further analysis (Figure 4.1). The direction of effect of the minor allele on alcohol 

dependence risk was matched for SNPs meeting both p-value thresholds. Because a 

nominal p-value threshold of p < 0.001 was used in the discovery subsample, many of the 

SNPs meeting this threshold may be false positive associations. It can therefore be 

expected that the direction of an associated null allele may flip in the second SAGE 

subsample. SNPs that share the direction of effect across both SAGE subsamples are 
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more likely to be true findings. SNPs that did not have the same direction of effect in the 

two halves of the sample were eliminated from the combined list of semi-replicated 

SNPs. The combined list of SNPs that showed association and had the same direction of 

effect across both halves of the discovery sample was then pruned based on an r2 

threshold of 0.50 using an LD-based pruning function in PLINK version 1.07 (Purcell et 

al., 2007). This method calculated pairwise genotypic correlations for the list of SNPs. 

One of each pair of SNPs with correlations greater than an r2 of 0.50 was removed. 

Because LD estimates are more accurate in larger samples, LD calculations for SNP 

pruning were performed in the complete SAGE GWAS sample, including individuals 

from COGA.  

 

Genetic sum scores and ROC curve analyses 

Additive genetic sum scores of risk alleles were created in the COGA GWAS sample 

based on pruned SNPs from SAGE GWAS results. Because the odds ratios varied across 

the SAGE discovery samples, risk alleles were not weighted. The genetic sum score was 

then used to classify case-control status in individuals from the COGA GWAS sample 

using ROC curve analyses. Association between alcohol dependence and the genetic sum 

scores and individual pruned SNPs was performed in the COGA sample.  

 

Part II. GWAS results from varying p-value thresholds 

Sample selection  

In Part II of the analyses, a combined GWAS sample was created by merging the COGA 

and SAGE GWAS samples. This combined COGA-SAGE GWAS sample was then split 
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into discovery and validation subsamples. The discovery and validation subsets of the 

sample were created based on an initial combined sample in an attempt to reduce 

heterogeneity across the discovery and validation samples compared with using discovery 

and validation samples gathered using different ascertainment procedures. In order to 

control for differences in association between African American and European American 

subjects, analysis for this part of the study was performed only in the European American 

subset. The FSCD and COGEND subset of the SAGE EA sample was combined with the 

COGA GWAS EA sample. Because the COGA GWAS sample contains individuals who 

are not part of the COGA subset of the entire SAGE sample, combining the COGA 

GWAS sample with the nicotine and cocaine studies created a larger GWAS sample than 

the SAGE GWAS sample alone. This combined sample allowed for more power when it 

was split in half into discovery and validation samples. Controls who endorsed 3 or more 

symptoms for DSM-IV AD, but did not cluster within a 12-month period, were removed 

from the combined sample, as these individuals could still represent increased genetic 

risk for alcohol dependence (N = 49, all from the SAGE GWAS sample). The combined 

sample included 2951 individuals, comprised of 1495 cases and 1456 controls (Table 

4.1).  

 

Table 4.1 Summary of cases and controls by study for combined 
COGA and SAGE GWAS sample 

 

 

 

 

 DSM-IV AD  
Study Controls Cases Total 
COGA 552 846 1398 
COGEND 702 335 1037 
FSCD 241 275 516 
Total 1495 1456 2951 
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The FSCD and COGEND subset of the SAGE EA sample and COGA GWAS EA 

combined sample was split randomly in half so that each half contained 50% of cases and 

50% of controls. In order to account for chance effects, repeated random sub-sampling 

cross-validation was implemented by performing this subsetting procedure100 times to 

obtain 100 subsamples in which analyses were completed. 

 

SNP pruning 

Before logistic regression analyses were performed, the LD-based pruning function in 

PLINK version 1.07 was used to prune the 1,041,983 SNPs genotyped in the combined 

sample. The SNPs were pruned at r2 < 0.50 using a sliding window of 50 base pairs 

shifted by 5 base pairs following each pruning step. Pruning resulted in 385,060 of the 

original SNPs pruned in, which represented 36.95% of all SNPs in the combined sample. 

 

Association analyses 

Association was performed in PLINK version 1.07 using logistic regression under an 

additive model with sex and a dummy-coded site covariate distinguishing between the 

COGA, FSCD, and COGEND study sites. Figure 4.1 lists the p-value thresholds used to 

select SNPs from association results in the first half of the sample. 

 

Genetic sum scores and ROC curve analyses 

Because both the COGA and SAGE GWAS samples had the same SNPs genotyped, and 

were confirmed to share the direction of the genotyped strand, GWAS results were 
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matched directly by allele. Genetic sum scores were created for autosomal SNPs. Scores 

of total allele count were weighted by the natural log of the odds ratio for each reference 

minor allele, and then divided by the number of non-missing genotypes for each 

individual using PLINK version 1.07: 

Genetic sum score  = 
[!!× !"(!"!)]

!
[!!× !"(!"!)]

!
 

where 𝑥!𝑥! is the number of reference alleles at the ith SNP, OR is the 

corresponding odds ratio, and N is the number of non-missing genotypes for each 

individual. 

Discriminatory accuracy of genetic sum scores was measured using ROC curve analysis 

in the caTools package (Tuszynski, 2011)  in R version 2.12.2 (R Development Core 

Team, 2011). The p-values associated with the AUCs for these sum scores were 

calculated based on the Wilcoxon rank-sum test using R version 2.12.2. Following 

completion of the 100 iterations of the subsampling procedure, the mean of the AUC 

estimates and confidence intervals of mean estimates were calculated using SPSS/PASW 

v17.0 (SPSS Inc., Chicago IL).  

 

Results 

Figure 4.2 summarizes the resultant number of SNPs at each step of analysis for both the 

EA sample and the entire sample. GWAS analyses of the entire SAGE sample including 

all individuals across ethnicities in Part I of the study resulted in 52 SNPs that met 

significance criteria at p < 0.001 in one discovery sample and p < 0.05 in the second 

discovery sample and had the same direction of effect in both discovery samples. After 
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LD-based pruning at r2 < 0.50, 39 SNPs remained. ROC curve analysis showed that the 

genetic sum score created based on these 39 SNPs did not have significant discriminatory 

accuracy in the COGA GWAS sample (Table 4.2). Association analysis of this genetic 

sum score with alcohol dependence in the entire COGA sample using logistic regression 

did not result in a significant association (p = 0.206). One SNP out of the 39 used for 

prediction had a p-value < 0.05 for association with alcohol dependence: rs1950231 on 

chromosome 14 (p = 0.0496). 

Analyses in the EA subset of the SAGE GWAS sample resulted in 24 SNPs that 

met significance criteria and shared direction of effect in both of the SAGE discovery 

sample subsets. After pruning, 21 SNPs remained. The genetic sum score created using 

these 21 SNPs was not a significant classifier for case-control status in the COGA GWAS 

sample. The AUC estimate for the sum score is shown in Table 4.2. The test of 

association of the genetic sum score with alcohol dependence in European-American 

subset of the COGA sample using logistic regression was not significant (p = 0.176). 

None of the 21 SNPs in the panel used for prediction in the European-American subset of 

the sample was associated with alcohol dependence at p < 0.05.   

 

Figure 4.2 Number of SNPs resulting from GWAS analyses with 
semi-replicated SNPs 
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Gray boxes show samples used for each step of analyses. White boxes display the 
selection criteria for SNPs at each step. The number of SNPs resulting from each step of 
analysis is shown in separate columns for the EA sample and for the entire SAGE 
GWAS sample. 
 

Table 4.2 ROC curve analysis results of semi-replicated SNPs from 
GWAS analyses 

 

Diagnostic 
Classifier 

 
Asymptotic 95% 

Confidence Interval 

AUC Std. Error a  
Asymptotic 

Sig.b  
Lower 
Bound 

Upper 
Bound 

39 SNPs in all 
individuals c 0.521 0.014 0.126 0.494 0.548 
21 SNPs in EA 
individuals d 0.520 0.016 0.203 0.489 0.551 
a. Under the nonparametric assumption 
b. Null hypothesis: true area = 0.5 
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c. Genetic sum score created using GWAS results in the entire sample including 
European American, African American, and other ancestries 
d. Genetic sum score created using GWAS results in the European American sample  
 

In Part II of the study assessing SNPs that met varying p-value thresholds, SNPs 

meeting increasingly stringent significance thresholds of p < 0.001 and lower did not 

have significant AUCs in ROC curve analyses. Subsets of SNPs meeting more liberal p-

value thresholds of p < 0.01 and greater had AUC estimates that were significant (p < 

0.05 for AUC). Table 4.5 summarizes mean AUC estimates for each set of SNPs meeting 

p-value thresholds across the 100 random divisions of the SAGE-COGA combined 

sample. The median of the p-values associated with each AUC estimate was determined 

(Table 4.5) because the distribution of these p-values was significantly skewed across the 

subsets of SNPs. Figure 4.3 illustrates the AUC estimates of genetic sum scores created 

based on varying p-value thresholds. Although the significance threshold at which the 

AUC value peaked varied across each random sample subset, AUC point estimates 

showed an increasing trend as the p-value threshold used for SNP selection became less 

stringent.  

 

Table 4.5 Results of SNP subsets from varying P-value thresholds 
 

   95% Confidence Interval  
P-value threshold 
score N subsets Mean AUC Lower Upper 

Median p-value for 
AUC 

P-value < 0.50 100 0.565 0.562 0.568 1.37E-05 
P-value < 0.40 100 0.565 0.562 0.568 1.42E-05 
P-value < 0.30 100 0.564 0.561 0.567 1.82E-05 
P-value < 0.20 100 0.564 0.561 0.567 2.62E-05 
P-value < 0.10 100 0.562 0.559 0.565 4.81E-05 
P-value < 0.05 100 0.559 0.556 0.562 1.04E-04 
P-value < 0.01 100 0.549 0.546 0.552 0.00167 
P-value < 0.001 100 0.528 0.526 0.531 0.0632 
P-value < 0.0001 100 0.517 0.515 0.519 0.291 
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Summary statistics for 100 random 50% splits of the combined COGA-SAGE sample 
into discovery samples and validation samples. Sum scores were created based on 
SNPs meeting each p-value threshold, by adding minor alleles weighted by the log of the 
odds ratio for AD. Confidence intervals are based on 100 AUC estimates from 100 
separate sum score calculations at each p-value threshold. Median p-value threshold 
was calculated because distributions of p-values were skewed.   
 
 
 

Figure 4.3 Mean AUC estimates for varying P-value thresholds 

 
The mean of all 100 AUC estimates for sum scores created using SNPs that meet 
different p-value thresholds in discovery samples is plotted here in the solid line. Dashed 
lines represent the upper and lower bounds of the 95% confidence intervals of the mean 
of the AUC estimates. 
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Discussion 

This study aimed to evaluate the clinical validity of genetic variants that have been 

associated with alcohol dependence by exploring the aggregate effect of associated SNPs 

on risk prediction for alcohol dependence. Prior studies on the clinical use of genetic 

information in predicting risk for other complex disorders have investigated the effect of 

genetic sum scores in risk assessment and shown significant, but small, AUCs. In our 

study, genetic sum scores were created based on results from two sources of genome-

wide association results: SNPs from a semi-replicated list of variants that were associated 

with alcohol dependence in two “separate” GWAS samples and SNPs that met varying p-

value significance thresholds in GWAS analyses. ROC curve analysis was used to assess 

the ability of the sum scores to classify cases and controls for alcohol dependence. The 

scores created based on semi-replicated SNPs at nominal p-value thresholds of p < 0.001 

and p < 0.05 in the two separate discovery and replication samples in Part I of the study 

did not show significant AUCs or significant association with alcohol dependence in the 

independent clinical validation sample. Results from Part II of the study showed 

significant, albeit small, AUC estimates for sum scores based on SNPs that met p-value 

thresholds ranging from p < 0.10 to p < 0.50. Significant AUC estimates were under 0.60.  

These results support a polygenic model involving hundreds of variants of small 

effect contributing to risk for AD that are consistent with other findings on alcohol 

phenotypes and other complex traits (Heath et al., 2011; Purcell et al., 2009; Frank et al., 

2012). Less stringent thresholds allowed for the selection of more true findings with 
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effect sizes that would not otherwise have reached genome-wide significance. Combining 

nominally associated SNPs in aggregate improved clinical validity because these true loci 

could outweigh noise from null loci.  

In Part I of the study, we created discovery and replication samples by splitting 

just the FSCD and COGEND portion of the SAGE GWAS sample in half, and then 

assessed for clinical validity in the COGA GWAS sample. This selection method studied 

the COGA and SAGE GWAS samples as distinct populations in order to find more 

variants that are associated in samples that are ascertained differently. Variants that 

replicated across the discovery sample, FSCD/COGEND, and the validation sample, 

COGA, would possibly contribute to AD risk in more general populations than variants 

that replicated in samples with similar population structures, such as those that replicated 

in both halves of SAGE. In Part II of the study, we combined the COGA and SAGE 

samples before performing subsampling to create samples with similar population 

structure across discovery and validation sets in order to address heterogeneity across 

samples. Of the list of SNPs in Part I of the study that met nominal significance criteria in 

both halves of the SAGE sample, the majority of SNPs did not share the same direction 

of effect suggesting that many of these results could be false positives. It is expected that 

many SNPs meeting the nominal p-values would represent type I error, particularly given 

the high number of tests performed in GWAS analyses. The replication step was an 

attempt to filter out SNPs that had opposite directions of effect in order to retain a greater 

proportion of SNPs that could be true positives.  

The finding that genetic sum scores created from SNPs meeting less stringent p-

value thresholds were significantly associated with AD and had significant discriminative 
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ability suggests that varying p-value thresholds could better detect variants of small 

effect. The samples used in this study did not have enough power to detect the entire 

range of small effect sizes for individual variants assessed in these analyses at a genome-

wide significance level. Splitting the COGA-SAGE combined sample further reduced 

power. The numbers of loci meeting each p-value threshold were close to what would be 

expected by chance when selecting lists of SNPs at each threshold. Therefore, a genetic 

sum score created based on these thresholds would encompass SNPs that may not 

contribute to risk for AD. For these false positives, weighting by the log of the OR 

obtained from logistic regression in the discovery samples for these SNPs could in fact be 

weighting by the opposite direction of effect that some of the SNPs have in the validation 

sample. This in turn would decrease the association between the genetic sum score and 

alcohol dependence in the validation sample, and therefore the AUC. As sample sizes 

increase for studies of alcohol dependence, and as meta-analyses combine results across 

all genome-wide association studies of AD, a more precise odds ratio could be obtained 

and more true loci may be found.  

The polygenic nature of the AD indicates a spectrum of allele frequencies 

contributing to AD. Larger sample sizes are necessary for detecting smaller effects 

without including null markers at the same significance thresholds (Park et al., 2010) . 

This would allow the creation of genetic sum scores diluted by fewer null effects. The 

markers used in current GWAS platforms are common variants with minor allele 

frequencies greater than 1% that also capture multiple variants in LD with the variants 

directly genotyped on the SNP chip. There is evidence for alleles associated with AD 

with low frequency not captured on the GWAS platforms that still have a significant 
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effect on AD in the population. A previous report in the COGA and SAGE GWAS 

samples demonstrated that the Arg48His variant, rs1229984 in the ADH1B gene encoding 

alcohol dehydrogenase was associated with AD at p < 5x10-8 with a relatively large effect 

size (Bierut et al., 2012). In this study, a meta-analysis across COGA, FSCD, and 

COGEND showed that the allele encoding His48 had a significantly protective effect on 

alcohol dependence (OR = 0.34, P = 6.6x10-9). This variant was previously well-

recognized for its protective influence on alcohol dependence in Asian populations, but 

had low frequency in European Americans (MAF = 3-4% in the COGA and SAGE 

GWAS EA samples) and African Americans (MAF = 1-2% in COGA and SAGE GWAS 

AA samples). It is poorly captured by commercially available GWAS platforms such as 

the Illumina platform used in the COGA and SAGE GWAS samples, due to lack of LD 

with neighboring SNPs. Using the targeted genotyping data for the ADH1B SNP 

available in the COGA GWAS sample, we assessed the discriminatory accuracy for AD 

and found that rs1229984 alone has an AUC of 0.538 (p = 7.58 x 10-4) in COGA. 

Additional investigation of variants with lower frequency and expanded genetic 

association studies to include more variants not captured on GWAS arrays would allow 

for the inclusion of additional associated SNPs into a predictive score that may have 

better clinical validity.  

The results of this particular study, along with prior genome-wide association 

studies of alcohol dependence, reveals that the genetic architecture of alcohol dependence 

includes many common alleles of small effect that may in aggregate account for 

variability in AD. These results provide additional support for the theory of polygenic 

inheritance for a disease model for alcohol dependence. This information, coupled with 
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further studies on the nature of variants associated with AD, may help increase 

understanding of the biology of AD and how to utilize associated variant effects in risk 

prediction and treatment for AD.  
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Chapter 5: Estimating the genome‐wide effect of common polygenic 

variation and environmental factors on risk prediction for alcohol 

dependence symptom count 

 
 

Abstract 

This study assessed the extent to which common genetic variation contributes to 

variability in alcohol dependence (AD) symptom count, and how well aggregated effects 

of single nucleotide polymorphisms (SNPs) on AD symptom count predict risk for AD in 

independent samples. We used the genome-wide complex trait analysis (GCTA) tool 

developed by Yang et al. (2011) to estimate the proportion of variance in AD symptom 

count accounted for by genotyped SNPs in the Collaborative Study on the Genetics of 

Alcoholism (COGA) genome-wide association study (GWAS) sample and the Study of 

Addiction: Genes and Environment (SAGE) GWAS sample. We used the COGA and 

SAGE samples reciprocally as discovery and validation samples. We first estimated SNP 

effects using the discovery sample and then created additive genetic sum scores in the 

validation sample, weighted by the discovery SNP effects. The genetic sum scores were 

then assessed for their contributions to the variance in AD symptom count and the 

accuracy with which they predicted AD in the validation sample. The proportion of 

variance accounted for by SNPs across the genome was 53.19% in COGA and not 
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significant in SAGE. The predictive accuracy for AD, measured by the area under the 

receiver operating characteristic curve (AUC) was 0.549 in COGA and 0.527 in SAGE. 

Both GCTA sum scores were significantly associated with AD symptom count in the 

replication samples, accounting for 0.46% of the variance in SAGE and 0.57% of the 

variance in COGA. Including additional covariates associated with AD was able to 

account for an additional 18.80% of the variance in symptom count. 
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Introduction 

Alcohol dependence is a complex disorder that encompasses numerous medical, social, 

and psychiatric problems and has an estimated lifetime risk of 12.5-14% (Hasin et al., 

2007; Kessler et al., 1994). About 50-60% of the variability in alcohol dependence is 

attributed to genetic factors (Kendler et al., 1992; Heath et al., 1997). Alcohol 

dependence, along with a vast number of other common, complex traits, has been 

investigated using several genome-wide association studies (GWAS) over the past 

several years. Numerous associated variants have been reported from GWASs of alcohol 

dependence, though few have reached genome-wide significance levels (Treutlein and 

Rietschel, 2011a; Frank et al., 2012; Wang et al., 2011; Zuo et al., 2012; Zuo et al., 2011; 

Schumann et al., 2011). To date, more than 2,000 novel variants have been identified as 

associated with complex disease (NHGRI catalogue www.genome.gov/gwastudies)  

(Hindorff LA, MacArthur J (European Bioinformatics Institute), Wise A, Junkins HA, 

Hall PN, Klemm AK, and Manolio TA) . For the majority of these traits, the amount of 

phenotypic variance accounted for by discovered loci is substantially lower than the 

estimated heritabilities for the traits based on twin and family studies (Visscher et al., 

2012). A number of explanations have been attributed to the problem of “missing 

heritability” for common traits, including the contribution of epistasis, gene-environment 

interactions, epigenetics, and rare variants not captured on current GWAS arrays. 

Additionally, part of the missing heritability has been described as hidden heritability 

attributed to effects that are in fact captured on current GWAS platforms – common 

alleles with effects too small to be detected by genome-wide significance thresholds used 

in GWA studies (Gibson, 2010; Manolio et al., 2009).  



www.manaraa.com

 
 

 
 
 

115 

Evidence for a polygenic etiology exists for many complex traits, leading to the 

implication that a proportion of the missing heritability could be accounted for by the 

aggregate effect of common SNPs already genotyped on current GWAS arrays (Gibson, 

2010; International Schizophrenia Consortium et al., 2009). The Genome-Wide Complex 

Trait Analysis (GCTA) method developed by Yang et al. (2011) uses a mixed linear 

model to estimate the proportion of phenotypic variance accounted for by SNPs in total. 

The method models all common SNPs genotyped in GWAS together by using restricted 

maximum likelihood (REML) to provide an unbiased estimate of the variance explained 

by all SNPs. In the mixed linear model, SNP effects are treated as random variables, with 

additional covariates treated as fixed effects (Yang et al., 2010; Visscher et al., 2010). 

Prior GWAS evidence for height in 183,727 individuals showed 180 associated variants 

that explained 10% of the phenotypic variation in height, which is substantially lower 

than the estimated 80% heritability for height based on twin and family studies (Lango 

Allen et al., 2010). By modeling all 294,831 SNPs genotyped in the GWAS sample 

together, Yang et al. showed that 45% of the variance in height could be attributed to the 

aggregated effect of the genotyped SNPs. They found that when they accounted for 

incomplete LD between causal SNPs and genotyped SNPs, they were able to explain the 

remaining genetic variance in height (Yang et al., 2010; Visscher et al., 2010).  

In our analyses, the European American (EA) portions of the COGA sample and 

the SAGE GWAS sample without COGA GWAS individuals were used as discovery and 

replication samples. We used the GCTA software tool developed by Yang et al. 

(http://gump.qimr.edu.au/gcta/) to estimate the proportion of variance in DSM-IV alcohol 

dependence (AD) symptom count explained by common SNPs separately for the COGA 
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GWAS sample and the SAGE GWAS sample (Yang et al., 2011). We then used the best 

linear unbiased prediction (BLUP) solutions for individual SNP effects to create genetic 

sum scores weighted by the SNP effects in a second sample, either COGA or SAGE, that 

was independent of the sample used to estimate the random SNP effects.  

We also performed linear regression for AD symptom count in COGA and then 

generated genetic sum scores based on SNPs meeting varying p-value thresholds. The 

GCTA genetic sum scores from the mixed linear model and the genetic sum scores from 

association using linear regression were assessed for association with alcohol dependence 

symptom count and for predictive accuracy for alcohol dependence in an independent 

sample.  

Finally, we incorporated several environmental risk factors that have been shown 

to influence risk for alcohol-related phenotypes into the prediction models. Specifically, 

religiosity has been associated with decreased risk for substance use disorders (Kendler et 

al., 2003; Koopmans et al., 1999). In independent samples, educational attainment has 

been found to be associated with AD (Grant et al., 2012). Marital status has also been 

shown to be associated with risk for AD (Dick et al., 2006). In data from the National 

Longitudinal Alcohol Epidemiology Study and the National Epidemiologic Study on 

Alcohol and Related Conditions, marital status and educational attainment were 

associated with alcohol dependence and income was associated with alcohol abuse 

(Caetano et al., 2011). We added these additional variables to baseline models including 

the genetic sum scores into risk models for AD symptom count and AD diagnosis in 

order to assess the contributions of different predictors for AD.  
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Materials and methods 
 

Sample Selection 

 
The European American (EA) subsets of the Collaborative Study on the Genetics of 

Alcoholism and the Study of Addiction: Genes and Environment GWAS samples were 

used reciprocally as independent discovery and validation samples, after removing 

overlap between the two samples. Both were described in detail previously in Chapter 4 

and in the original COGA and SAGE GWAS reports (Edenberg et al., 2010; Bierut et al., 

2010). The entire SAGE EA sample consists of 1165 cases and 1376 unrelated controls 

(N = 2541). For this study, the COGA portion of the SAGE EA GWAS dataset was 

removed (N = 939, with 555 cases and 384 controls) in order to use the FSCD (N = 519, 

with 275 cases and 244 controls) and COGEND (N = 1083, with 335 cases and 748 

controls) portions of the SAGE dataset and the COGA GWAS dataset as independent 

subsets. The total number of individuals from COGA was 1398 individuals (847 cases 

and 552 controls) and the total number from SAGE was 1602 individuals (610 cases and 

992 controls). 

 

Data Analysis 
 
Discovery sample analysis using the GCTA method 
 
 
Figure 5.1 summarizes the study flow. The GCTA tool was used to estimate the 

phenotypic variance explained by autosomal SNPs using the REML method for AD 
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symptom count in the COGA and SAGE GWAS EA samples as described in Yang et al. 

(2011). The tool uses a mixed linear model, with covariates treated as fixed effects and 

genetic factors estimated as random effects. The phenotypic variance in AD symptom 

count attributed to common SNPs was calculated based on a genetic relationship matrix 

(GRM) across all individuals in the GWAS sample; the quantitative phenotype is 

regressed on genetic similarity in the mixed linear model. Prior to estimating the variance 

accounted for by SNPs using the genetic relationship matrix, we followed Yang et al’s 

procedure to implement a genetic relationship cut-off of 0.025 – corresponding to cousins 

2-3 times removed – in order to remove potential shared environmental and latent genetic 

factors in more closely related individuals, which may account for additional proportions 

of the phenotypic variance beyond that of the genotyped SNPs. Following pruning of the 

genetic relationship matrix at a relationship of 0.025, 1261 individuals remained of the 

1398 individuals in the COGA EA sample and 1524 of the 1602 individuals remained in 

the SAGE EA sample. Two additional ancestry outliers from SAGE and two from COGA 

were removed from the samples prior to estimation of variance components. 

The model used in the GCTA tool is represented by the following equation:  

𝑦 = 𝑋𝛽 + 𝑔 + 𝜀  𝑤𝑖𝑡ℎ  𝑉 = 𝐴𝜎!! + 𝐼𝜎!! 

where y is the phenotypic value, 𝛽 is the fixed effects (i.e. covariates), g 

represents the total genetic effects of individuals with g~N(0, A𝜎!!).𝜎!!). 

𝑉 represents the variance of 𝑦.𝑦. 𝐴 represents the genetic relationship matrix 

calculated from genotype data in the sample. 𝜎!!𝜎!! corresponds to the variance 

explained by all SNPs, estimated using restricted maximum likelihood. I is an 
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NxN identity matrix and 𝜎!!𝜎!! represents variance explained by residual effects 

(Yang et al., 2011).  

In our analyses, the following covariates were included as fixed effects in the 

mixed linear model: age, sex, 20 eigenvectors, and year of birth. GCTA estimation of the 

variance accounted for by SNPs in the SAGE GWAS sample included study site as an 

additional covariate in order to account for site differences between the FSCD and 

COGEND samples. The 20 eigenvectors were estimated using the GCTA tool and were 

included in the model because the GCTA method could be particularly sensitive to 

population stratification (Browning and Browning, 2011). Population stratification can 

occur if cases and controls differ in frequencies of alleles due to variables other than 

disease status that happen also to differ between cases and controls. If population 

structure differences between cases and controls are not accounted for, alleles attributable 

simply to ancestry differences could be spuriously associated with the disease phenotype. 

For example, in the case of height, spurious associations may occur if there are sub-

populations with different ancestries in the study sample and individuals from one 

ancestry group happen to differ in the height phenotype compared with individuals from 

another group, and there are allele frequency differences between these subgroups. These 

alleles could very well have a contribution to height in the sample population; however, 

they could also have frequency differences across the sub-populations simply because 

individuals in different populations with distinct ancestral backgrounds often have 

different allele frequencies and LD structure. A plot of the first two eigenvectors 

indicated that the European American sample in COGA is not entirely homogeneous 

(Figure 1). Age, sex and year of birth were included as covariates to account for 
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differences in drinking patterns between cohorts and sex, and to control for possible 

changes in lifetime AD symptom count endorsement with increasing age.  

 
 

Figure 5.1 Overview of Study Design 
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Figure 5.2 Principal components analysis plot of 1st eigenvector and 

2nd eigenvector in the EA subset of the COGA GWAS sample 
 

 
 

 
The number of alcohol dependence symptoms coded for each individual 

represented the maximum number of alcohol dependence symptoms that the individual 

ever endorsed across interview waves. The age variable corresponded to the age at the 

interview during which the maximum symptom count was endorsed and was included as 

a covariate because maximum lifetime symptom count could increase as an individual 

ages and has had more time to experience symptoms. Furthermore, an individual who 

endorses 7 symptoms at a young age may represent different etiology for AD compared 

with an individual who endorses the same number of maximum symptoms at an age that 

is several decades older. Year of birth, although correlated with age at interview, was 

included as a continuous variable in the model in order to control for cohort effects, as 
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patterns of AD symptom counts have differed across cohort years, particularly for 

women.  

 
 

Validation sample replication of GCTA genetic sum scores 
 
The random effects of the SNPs were predicted in COGA and SAGE using the best linear 

unbiased prediction (BLUP) method. The BLUP solutions for the individual SNP effects 

were calculated based on these random effects. In the set of analyses using COGA as the 

discovery sample, GCTA genetic sum scores of minor alleles of each genotyped SNP, 

weighted by the BLUP solution of each SNP effect from COGA, were created in the 

FSCD and COGEND portion of the SAGE EA GWAS sample using the --profile 

function in PLINK version 1.07 (Purcell et al., 2007). The GCTA genetic sum scores 

were then assessed for association with alcohol dependence symptom count using linear 

models in the independent SAGE sample. These data analysis steps were then repeated 

using SAGE as the discovery sample and COGA as the replication sample. Linear models 

in the replication sample included sex, age at interview, and year of birth as covariates in 

both COGA and SAGE, with the addition of study site as a covariate for SAGE analyses.  

In the analyses using the SAGE sample as a discovery sample and the COGA 

sample as the replication sample, additional covariates associated with alcohol 

dependence including religious attendance, marital status, educational attainment, and 

income were available in the COGA sample, which allowed for the inclusion of these 

additional variables in the linear model. All linear models were performed using R 

version 2.12.2 (R Core Development Team, 2011). 
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Analysis of SNPs meeting varying p-value thresholds in GWAS of AD symptoms 

Analyses on alcohol dependence symptom count were also performed using a linear 

regression approach in the COGA EA sample in order to compare the results to the 

GCTA genetic sum scores. Linear regression was performed using Plink version 1.07 

(Plink et al., 2007) in the COGA EA sample with alcohol dependence symptoms as the 

outcome and age, age at interview, and year of birth as covariates. SNPs were pre-pruned 

at an r2 < 0.50 before they were included in the analyses, resulting in 386,545 SNPs. 

Autosomal SNPs were selected from the results. Varying p-value thresholds were used to 

select SNPs at p < 0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, .0.4, and 0.5. Genetic sum 

scores were created in the independent FSCD and COGEND portions of the SAGE 

GWAS sample with each subset of SNPs by adding minor alleles weighted by 

standardized Betas obtained from the linear regression results in COGA. The proportion 

of variance accounted for in AD symptom count by the genetic sum scores was assessed 

in the FSCD/COGEND validation sample. Linear models in this assessment included the 

same covariates as the ones used to assess the GCTA genetic sum scores.  

 

Clinical validity assessment 
 
The GCTA genetic sum scores created based on the BLUP solutions for SNP effects and 

the genetic sum scores created based on linear regression results in COGA were assessed 

for predictive ability for alcohol dependence in the independent SAGE sample. 

Discriminatory accuracy was measured using the area under the receiver operating 

characteristic curve (AUC) in SPSS/PASW version 17.0 (SPSS Inc., Chicago IL). 



www.manaraa.com

 
 

 
 
 

124 

 

Results 
 
 
GCTA variance components estimation 
 
Figure 5.3a and 5.3b displays the distribution of alcohol dependence symptom counts 

across the COGA and SAGE samples, respectively, separately for cases and controls. The 

proportion of phenotypic variance in alcohol symptom count that was accounted for by 

common SNPs in COGA was 53.19% (SE = 25.7%). The proportion of variance 

accounted for by common SNPs in SAGE was not significant at 0.0001% (SE = 24.60%).  

 

Figure 5.3a. Alcohol dependence symptom count in the SAGE GWAS sample. 
Distribution of alcohol dependence symptom count is shown, separated by case and 
control status. Blue bars represent percentage of the controls endorsing the symptom 
count labeled on the x-axis. Green bars represent percentage of the cases. Several 
individuals who endorsed 3 or 4 symptoms were classified as controls because the 
symptoms did not cluster in a 12-month period. 
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Figure 5.3b Alcohol dependence symptom count in the COGA GWAS sample. 
Distribution of alcohol dependence symptom count is show below, separated by case 
(green) and control (blue) status. The COGA GWAS sample was preferentially selected 
in order to maximize difference in phenotype between the cases and controls, as is 
shown by the larger difference in symptom count frequencies between cases and 
controls. Only three individuals in COGA endorsed 2 symptoms. 
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Linear models  

GCTA genetic sum scores in the SAGE sample 

The base linear model including sex, year of birth, age, and the site covariate 

distinguishing between COGEND and FSCD in SAGE showed that all covariates were 

significantly associated with alcohol dependence symptom count (Table 5.1). The 

adjusted r2 of the base model showed that the model accounted for 12.46% of the 

variance in alcohol dependence symptom count. The GCTA genetic sum scores followed 

a normal distribution (Figure 5.4). After the GCTA genetic sum score was added to the 

base model, the score was significantly associated with alcohol dependence symptom 

count (F1,1594 = 5.609,  p = 0.00376). The proportion of variance in alcohol dependence 
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symptoms accounted for by the GCTA genetic sum score was 0.46%. The new model 

including the GCTA genetic sum score had an adjusted r2 of 12.87%. A comparison of 

Beta estimates showed that the GCTA genetic sum score had a lower Beta compared with 

the other predictors.  

 

P-value threshold analyses in the SAGE sample 

In the assessment of SNPs that met varying p-value thresholds in association with AD 

symptom count in COGA, SNPs meeting increasingly stringent significance thresholds of 

p < 0.0001 and lower did not account for a significant proportion of the variance in 

SAGE. Genetic sum scores created based SNPs that met a p-value cutoff of 0.001 to 0.5 

in COGA did account for a significant proportion of the AD symptom count variance in 

SAGE (Table 5.2).   

Each of the p-value threshold genetic sum scores was modestly correlated with 

the GCTA genetic sum score (r = ~0.3, p <2.2x10-16). When both the genetic sum score 

selected based on p < 0.5 and the GCTA sum score were added to the linear model in 

SAGE, in combination the two genetic sum scores were able to account for a total of 

1.52% of the variance in AD symptom count. However, the GCTA genetic sum score 

was no longer significant when the additional score was added (p = 0.153), although the 

p-value threshold score remained significant (p = 7.29x10-6). 

 

Figure 5.4 Distribution of GCTA genetic sum scores in SAGE.  
Sum scores plotted here are created based on the sum of the minor allele for each 
genotyped SNP weighted by the COGA-derived BLUP solutions.  
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GCTA genetic sum score analyses in the COGA sample  

The base linear model including sex, year of birth, and age showed that all covariates 

were significantly associated with alcohol dependence symptom count in the COGA 

GWAS sample (Table 5.1). The base model accounted for 21.07% of the variance in 

alcohol dependence symptom count. The GCTA genetic sum score was added to the base 

model, and was shown to be associated with alcohol dependence symptom count (F1,1391 

= 10.282, p = 0.001374). The proportion of variance in alcohol dependence symptoms 

accounted for by the GCTA genetic sum score was 0.52%. The new model including the 

GCTA genetic sum score had an adjusted r2 of 21.59%. 

After incorporating into the model additional covariates that have previously been 

found to account for some of the variance in alcohol dependence, including religious 
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service attendance, income, educational attainment, and marital status, these covariates 

together accounted for an additional 18.80% of the variance in alcohol dependence 

symptom count. The final model accounted for 39.38% of the phenotypic variance in 

alcohol symptom count. The GCTA sum score was still significant after adding the 

additional covariates (p = 0.00360). A comparison of Beta estimates showed that the 

GCTA genetic sum score had a higher Beta compared with several other covariates, 

including age, year of birth, religious attendance, income, and educational attainment. 

 

Table 5.1 Summary of linear models in SAGE and COGA including 
GCTA sum score. All variables are centered in order to compare 
Beta estimates. The GCTA genetic sum score was z-transformed.  

 
Summary of linear models in SAGE based on COGA-derived SNP effects  
     

  Estimate S.E. t-value p-value 
Base model with covariates    
Intercept 2.424 0.053 46.043  < 2e-16 
sex         -0.874 0.110 -7.968 3.05E-15 
study site 0.761 0.120 6.336 3.06E-10 
year of birth -0.431 0.055 -7.826 9.08E-15 
age         -0.438 0.056 -7.832 8.71E-15 
Model summary: F4,1595=57.9,  p-value<2.2e-16, Multiple r2=0.1268, Adj. r2=0.1246  
     
Model with covariates + GCTA genetic sum scores   
Intercept 2.420 0.053 46.15  < 2e-16 
sex         -0.877 0.109 -8.018 2.05E-15 
study site 0.757 0.120 6.315 3.49E-10 
year of birth -0.432 0.055 -7.865 6.73E-15 
age         -0.439 0.056 -7.877 6.17E-15 
GCTA genetic score (z) 0.152 0.053 2.902 0.00376 
Model summary: F5,1594=48.22,  p-value<2.2e-16, Multiple r2=0.1314, Adj. r2=0.1287 
 
Proportion of variance in AD symptom count explained by GCTA genetic sum score= 0.46% 

     
Summary of linear models in COGA based on SAGE-derived SNP effects  
     
 
  Estimate S.E. t-value p-value 

Base model with covariates    
Intercept 3.4026 0.0689 49.377  < 2e-16 
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sex         -2.4155 0.1382 -17.476  < 2e-16 
year of birth 0.0775 0.0242 3.209 1.36E-03 
age         0.0300 0.0252 1.191 2.34E-01 
Model summary: F3,1392=125.1,  p-value<2.2e-16, Multiple r2=0.2124, Adj. r2=0.2107  
     
Model with covariates + GCTA genetic sum scores   
Intercept 3.4026 0.0687 49.5410  < 2e-16 
sex         -2.4076 0.1378 -17.4740  < 2e-16 
year of birth 0.0832 0.0241 3.4490 5.79E-04 
age         0.0357 0.0251 1.4200 1.56E-01 
GCTA genetic score (z) 0.2210 0.0689 3.2070 1.37E-03 
Model summary: F4,1391=97.02,  p-value<2.2e-16, Multiple r2=0.2181, Adj. r2=0.2159 
     
Proportion of variance in AD symptom count explained by GCTA genetic sum score= 0.57% 
     
Model with covariates + GCTA genetic sum scores + additional variables  
Intercept 2.4413 0.1046 23.3430  < 2e-16 
sex         -1.9245 0.1448 -13.2860  < 2e-16 
year of birth 0.1509 0.0347 4.3500 1.50E-05 
age         0.1296 0.0358 3.6220 3.07E-04 
GCTA genetic score 0.2102 0.0720 2.9180 3.60E-03 
Religious attendance -0.0095 0.0019 -4.8730 1.27E-06 
Current income -0.1235 0.0389 -3.1710 0.001565 
Highest school grade -0.1393 0.0346 -4.0240 6.16E-05 
Marital status2 0.9239 0.6533 1.4140 0.157616 
Marital status3 2.0339 0.3404 5.9750 3.20E-09 
Marital status4 1.8790 0.1974 9.5170  < 2e-16 
Marital status5 1.3563 0.2390 5.6760 1.80E-08 
Model summary: F11,1005=61.01,  p-value<2.2e-16, Multiple r2=0.4004, Adj. r2=0.3938 
     
Proportion of variance in AD symptom count explained by additional variables = 18.8% 
 

 
Marital status is dummy-coded with “married” as reference; marital status2 = widowed, marital 
status3 = divorced, marital status4 = separated, marital status5 = never married 
 
 
 
Table 5.2 Summary of linear models in SAGE and COGA using genetic sum scores 
created based on SNPs meeting varying p-value thresholds.  
 
Validation sample proportion of variance accounted for by sum score: 
Summary of linear models in SAGE based on COGA-derived results  

     

P-value threshold 
score 

Variance 
accounted for in 
AD sx count 

p-value from 
linear model 

AUC estimate 
for AD 

p-value for 
AUC 

P-value < 0.50 0.0142 3.12E-07 0.570 2.88E-06 
P-value < 0.40 0.0140 4.03E-07 0.569 3.97E-06 
P-value < 0.30 0.0136 5.79E-07 0.567 6.41E-06 
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P-value < 0.20 0.0131 9.60E-07 0.561 4.48E-05 
P-value < 0.10 0.0133 7.76E-07 0.557 0.0001123 
P-value < 0.05 0.0144 2.67E-07 0.559 7.25E-05 
P-value < 0.01 0.0105 1.13E-05 0.546 0.001993 
P-value < 0.001 0.0054 1.67E-03 0.536 0.01578 
P-value < 0.0001 0.0005 3.55E-01 0.509 0.5343 

     Baseline models were the same as the models shown in Table 5.1. Reported are the change in r2 
attributed to the genetic sum score, and the associated p-value in the linear model. AUCs for 
discriminative accuracy for alcohol dependence are reported with associated p-values. 
 

Risk prediction assessment 

Clinical validity determined for the GCTA genetic sum score using the receiver operating 

characteristic curve showed an AUC of 0.527 (p = 0.070) for the GCTA genetic sum 

score in discrimination for case-control status of alcohol dependence in SAGE. An 

assessment of the predicted probabilities of the logistic regression model for alcohol 

dependence including age, sex, study site, and year of birth covariates showed that the 

covariates have greater discriminative accuracy than the GCTA genetic sum scores (AUC 

= 0.690, p <0.001). The model with covariates and the GCTA genetic sum score had a 

nominal increase in AUC compared with the covariates only model (AUC = 0.692, p 

<0.001). (Figure 5.5a). 

The p-value threshold scores had significant AUCs in ROC curve analyses for 

SNPs that had met more liberal p-value thresholds of p < 0.001 and greater in the COGA 

discovery sample (Table 5.2). AUC point estimates showed an increasing trend as the p-

value threshold used for SNP selection became more liberal.  

Clinical validity analyses in COGA for the GCTA genetic sum score using the 

ROC curve showed a significant AUC of 0.559 (p = 0.00194) for the GCTA genetic sum 

score in discrimination for case-control status of alcohol dependence. An assessment of 

the predicted probabilities of the logistic regression model for alcohol dependence 
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including age, sex, and year of birth covariates showed that the covariates have greater 

discriminative accuracy than the GCTA genetic sum scores (AUC = 0.765). The model 

with covariates and the GCTA genetic sum score had a nominal increase in AUC (AUC = 

0.771). The incorporation of additional variables increased the AUC further to 0.865. All 

AUC estimates were significant (Figure 5.5b). 

 

Figure 5.5a Discriminatory accuracy in SAGE 
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Figure 5.5b Discriminatory accuracy in COGA 
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Discussion 

Previous candidate gene and genome-wide association studies of alcohol dependence and 

other traits have reported a number of associated variants. Many of these variants only 

account for a small fraction of the phenotypic variability in the complex trait. This study 

aimed to assess the proportion of phenotypic variance explained by common SNPs for 

DSM-IV alcohol dependence symptom count and to assess for replication and clinical 

validity for alcohol dependence symptom count and alcohol dependence in independent 

validation samples. 

The results of the GCTA mixed linear model showed a significant proportion of 

the variance in alcohol dependence symptom count accounted for by all GWAS SNPs in 

COGA of about 53%, which is within the range of the estimated heritability of 50-60% 

for alcohol dependence based on twin studies (Kendler et al., 1992; Heath et al., 1997; 

Prescott and Kendler, 1999). The results from replication analyses showed significant 

replication of the resulting GCTA genetic sum scores created using the BLUP solutions 

for individual SNP effects in both the COGA and SAGE replication samples. Clinical 

validity for models including the GCTA genetic sum score showed small AUCs for the 

GCTA genetic sum score in discrimination for case-control status of alcohol dependence 

in both COGA and SAGE. An assessment of the predicted probabilities of the logistic 

regression model for alcohol dependence including age, sex, site, and year of birth 

covariates showed that the covariates have greater discriminative accuracy than the 

GCTA genetic sum scores.  

Prior results in these analyses without year of birth as a covariate resulted in a 

substantially higher estimate of heritability attributed to the common SNPs on the array. 
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In COGA, the proportion of phenotypic variance in alcohol dependence explained by 

common SNPs was 75.64% (SE = 25.51%) in the discovery sample and 0.75% in the 

SAGE validation sample, in contrast to the 53.19% (SE = 25.8%) and 0.46% in the 

analyses that included year of birth as a covariate. This contrast in results emphasized the 

importance of accounting for a cohort effect in the model for alcohol dependence 

symptom count, particularly since drinking patterns in the United States have changed 

over time. 

Genetic sum scores created based on linear regression results also accounted for a 

significant proportion of the variance in alcohol dependence symptom count. Genetic 

sum scores created based on a p-value cutoff of 0.001 to 0.5 in COGA accounted for a 

significant proportion of the AD symptom count variance in SAGE, with scores based on 

p < 0.001 accounting for about 0.54% of the variance and scores based on p < 0.1-0.5 

accounting for 1-1.4% of the variance in alcohol dependence symptom count. In 

combination, the genetic sum score selected based on p < 0.5 and the GCTA genetic sum 

score based on a discovery COGA sample were able to account for 1.52% of the variance 

in AD symptom count in SAGE. The observation that the GCTA genetic sum score was 

no longer significant after adding the genetic sum score created based on SNPs with p < 

0.50 in linear regression analyses and the modest correlation between the two scores 

suggests that there are some shared polygenic effects captured by both genetic sum 

scores.  

Results in COGA showed that the variance accounted for by genome-wide SNPs 

in aggregate is substantial at about 53%. The GCTA genetic sum score, however, 

accounted for a much smaller proportion of variance (0.46%) in the independent SAGE 
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sample. This shows that there could be a great degree of prediction error of individual 

SNPs effects estimated by the GCTA tool. The sample sizes used in this study were 

limited compared with the previous study on height in which the method was first 

demonstrated, which had close to 4,000 individuals. In order to assess the impact of 

sample size on variance estimate, the original study sampled 4 replicates of 1,000, 2,000, 

and 3,000 individuals. They found that the average estimates were the same across 

samples, but the standard error increased with decreasing sample size (Yang et al., 2010).  

Although common SNPs as estimated by the GCTA tool did not in aggregate 

account for a significant proportion of the variance in AD symptom count in SAGE, the 

GCTA genetic sum scores created based on the BLUP solution of these individual SNP 

effects in SAGE did significantly account for 0.57% of the variance in COGA. In order to 

assess whether these could be spurious results, further follow-up analyses were 

performed in which the GCTA tool was applied to a non-heritable quantitative phenotype 

in SAGE. A random continuous phenotype was simulated in the SAGE sample to 

determine whether a negative finding in the discovery sample using the GCTA tool could 

still create SNP effects that accounted for a significant proportion of the variance in AD 

symptom count in an independent sample. Similar to results in real SAGE data, aggregate 

SNPs did not account for a significant proportion of variance in the continuous phenotype 

in SAGE. Unlike the results of real SAGE data, the GCTA genetic sum score created 

based on the BLUP solutions of SNP effects was not significantly associated with AD 

symptom count in COGA (p = 0.554). This suggests that although the aggregate SNPs 

did not account for a significant proportion of the phenotypic variance in AD symptom 
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count in SAGE, individual SNP effects were still able to predict some degree of risk in 

the independent COGA sample.   

Results in SAGE were substantially different from COGA. One reason for this 

discrepancy may be that individuals in COGA and SAGE differ in phenotypic severity 

and therefore underlying etiology for AD. COGA was clinically ascertained from 

treatment centers for alcohol dependence throughout the United States. The cocaine-

dependent individuals from the FSCD sample in SAGE were also clinically ascertained 

from chemical dependency centers; however, the nicotine dependence COGEND study in 

the SAGE sample was designed as a community-based sample. The COGEND study 

makes up the majority (about 2/3) of the SAGE sample. Because most of the SAGE 

sample is community-based, the sample may represent a different range of phenotypes 

with distinct risk for AD compared with the COGA sample. In fact, the COGA sample 

was ascertained specifically to maximize difference in symptom count between cases and 

controls, and therefore have fewer individuals who are controls endorsing the middle-

range 2 symptoms compared with SAGE, which includes individuals across the range of 

symptoms, including several controls who endorsed 3 AD symptoms, but did not cluster 

in a 12-month period, which is necessary for an AD diagnosis. Furthermore, as shown by 

Figure 5.4a and 5.4b, COGA has a greater number of individuals endorsing higher 

symptom counts than SAGE. COGA may therefore have been more enriched to estimate 

genetic effects for AD with higher symptom count. 

These results support a polygenic model of risk for alcohol dependence symptoms 

that is consistent with prior studies on psychiatric and other common complex disorders 

(International Schizophrenia Consortium et al., 2009; Heath et al., 2011; Gibson, 2010). 
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Although the GCTA genetic sum scores have replicated in the independent samples, the 

proportion of variance accounted for the sum scores were less than that accounted for by 

other variables such as religious attendance, income, educational attainment, and marital 

status. The reason that the additional factors accounted for more of the variance in 

symptom count could be due partly to the clinical nature of the ascertainment of the 

COGA sample from treatment centers for alcohol dependence. These variables may 

therefore have different contributions to alcohol-related outcomes in the COGA sample 

than to alcohol-related traits in a general population. 

This study shows that common variants, in aggregate, account for a significant, 

but small, proportion of the variance in alcohol dependence symptom count. Genome-

wide association studies for alcohol-related phenotypes have provided more information 

about the genetic architecture of AD. That there has not been an emergence of single 

large-effect alleles accounting for a large proportion of variance in alcohol use 

phenotypes, but rather multiple loci accounting for a small proportion of the phenotypic 

variability suggests that a polygenic model could potentially improve risk prediction. 

Prior studies by Aulchenko et al. for height found through simulation that when 

predicting phenotypic extremes such as 1% of the highest and lowest values with an AUC 

of 0.80, a genetic score needs to explain 17% of the variance in height (Aulchenko et al., 

2009). When predicting the phenotype with an AUC of 0.95, then genetic scores needed 

to explain 53% of the variance in height. Our simulation studies conducted specific to 

alcohol dependence suggest that when we have more exhaustively identified genes 

contributing to the genetic susceptibility toward alcohol dependence, there is the potential 

for AUCs approaching 80% to be reached with genetic information (Maher et al., in 
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preparation; Chapter 2). Although genetic information has limited clinical validity at the 

moment, we may have the potential for future clinical validity if we assess many genetic 

variants and environmental factors together. 
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Chapter 6: Genetic risk prediction for alcohol dependence subtypes 

 
 

Abstract 

Alcohol dependence (AD) is a complex psychiatric condition with a great deal of 

phenotypic and etiologic heterogeneity. Multiple subtypes of AD have been described, 

including an internalizing subtype that is often comorbid with major depressive disorder 

and anxiety and an externalizing subtype that is often comorbid with other drug 

dependence, conduct disorder, and adult antisocial personality disorder. Twin studies 

have suggested that part of the co-occurrence of these phenotypes is due to shared genetic 

factors. In this study, the Collaborative Study on the Genetics of Alcoholism (COGA) 

and Study of Addiction Genes and Environment (SAGE) genome-wide association study 

(GWAS) samples were used to investigate the etiology of phenotypes correlated with AD 

and risk prediction for an internalizing subtype of AD, AD with major depressive 

disorder (MDD), and an externalizing subtype of AD, AD with conduct disorder or with 

illicit drug dependence. Results showed that sum scores of individual SNP effects derived 

for AD symptom count also accounted for significant proportions of variance in 

correlated phenotypes that did not appear to be driven solely by phenotypic correlation 

with AD symptoms. Assessment of risk prediction for AD subtypes showed increasing, 

but modest, areas under the receiver operating characteristic curve (AUCs) of 0.547 to 

0.5610 for SNPs meeting p < 0.05 to p < 0.50 respectively, and non-significant results for 
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MDD, which may be due to low power in this sample. This study suggests that the shared 

genetic variance between AD-related phenotypes could be due in part to aggregated 

genome-wide common polygenic variance of small effect, but that prediction of subtypes 

is modest.  
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Introduction 

Alcohol dependence (AD) is a complex psychiatric condition with a large degree of 

phenotypic and etiologic heterogeneity. A number of other psychiatric phenotypes often 

co-occur with alcohol dependence, prompting the notion of subtypes of AD. There exists 

extensive history for exploration of alcohol-related subtypes. In particular, Cloninger et 

al. has described Type I alcoholism, which has later age of onset after 25 years, lower 

novelty-seeking and antisocial behavior, anxious personality traits, and higher harm 

avoidance than Type II alcoholism, which is characterized by earlier onset, higher 

novelty-seeking and antisocial behavior, and lower harm avoidance (Cloninger et al., 

1988; Cloninger et al., 1981) . Another subtype that has been widely described is Babor’s 

Type A and Type B typology (1992), in which Type A is characterized by later onset, 

less severe dependence, with fewer alcohol-related problems and childhood risk factors, 

and less comorbidity with other psychiatric disorders (Babor et al., 1992b; Babor et al., 

1992a). Studies using latent class analysis of AD phenotypes have shown the following 

classes: a mild class with low likelihood of comorbid psychopathology, a severe class 

characterized by high probability of comorbidity with psychopathology, and a class with 

high probabilities of major depressive disorder (Sintov et al., 2010). A study by Del Boca 

and Hesselbrock showed a mild class, a severe class, an internalizing class with high 

probabilities of depression and anxiety, and an externalizing class with high levels of 

antisocial personality disorder (Del Boca and Hesslebrock, 1996).  

Researchers have debated whether the comorbidity between AD and major 

depressive disorder (MDD) is attributed to a causation model in which major depressive 

disorder increases risk for AD, and/or vice versa, or whether an additional factor 
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influences risk for both (Nurnberger et al., 2002; Lyons et al., 2006). Studies have 

suggested that MDD and AD are genetically related. Family studies show that the co-

occurrence of AD and depression occurs across relatives. First-degree relatives of 

alcoholic probands in the Collaborative Study on the Genetics of Alcoholism (COGA) 

have been described to have an increased occurrence of depressive syndrome, or 

depression that may or may not occur with increased alcohol consumption (Nurnberger et 

al., 2002). Twin studies have found a genetic correlation of approximately 0.4-0.6 

between major depressive disorder and alcohol dependence (Kendler et al., 1993) . 

Linkage studies have identified that the same chromosomal region was linked to both AD 

and MDD, suggesting that a common locus may increase risk for either AD or MDD 

(Nurnberger et al., 2002). Candidate gene association studies have discovered 

associations with AD that were particularly strong for AD that is comorbid with major 

depressive disorder, compared with AD alone (Wang et al., 2004; Dick et al., 2007d). 

Recently, a genome-wide association of comorbid AD and MDD in COGA reported top 

results in several genes that had not been previously implicated, as well as multiple 

pathways, including glutaminergic genes. The majority of results were shown to be 

different between the comorbid phenotype and AD without MDD  (Edwards et al., 2012).  

Twin research has shown evidence for shared genetic contributions across alcohol 

dependence and externalizing psychopathologies. Kendler et al., (2003) studied the 

contributions of genetic and environmental factors to common psychiatric disorders and 

found that 69% of the heritability of alcohol dependence was accounted for by a common 

genetic factor contributing to a group of externalizing phenotypes, which included other 

drug dependence, antisocial personality disorder, and conduct disorder (Kendler et al., 
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2003b) . Candidate gene studies have reported alcohol dependence associations that are 

stronger for, or unique to, AD with comorbid drug dependence, conduct disorder, and 

antisocial personality disorder, illustrating genetic contributions that may be specific to 

these externalizing phenotypes. Foroud et al. found that SNPs in TACR3 that were 

associated with AD in EA COGA families had the strongest association in individuals 

with more severe AD and comorbid cocaine dependence (2008). Dick et al. showed that 

variants in CHRM2 is associated with a form of AD that is comorbid with drug 

dependence, but not with AD alone, and that the risk allele for CHRM2 based on 

association of adult AD conferred increased risk for adolescent externalizing under 

conditions of low parental monitoring (Dick et al., 2007b; Dick et al., 2011). Agrawal et 

al. found GABRA2 to be associated with AD only in individuals with comorbid drug 

dependence; when these individuals were removed from the analysis, no association 

remained (2006). Variants associated in GABRA2 with AD have been further 

characterized in a developmental sample and were found to be associated with 

trajectories of externalizing (Dick et al., 2009).   

The convergence of phenotypic, family, twin, and molecular genetics studies 

suggests that distinct etiological contributions may underlie risk for internalizing and 

externalizing subtypes of alcohol dependence. The studies described previously here in 

Chapters 3 and 4 investigated the prediction of a binary diagnosis of AD. Using genetic 

information from specific candidate genes did not result in significant predictive accuracy 

for AD and GWAS results showed significant, but modest discriminatory accuracy for 

AD. One reason for the low predictive accuracy could be that AD is a heterogeneous 

phenotype, and an AD diagnosis that is comorbid with another condition may have 



www.manaraa.com

 
 

 
 
 

145 

different underlying risk than AD in general. Accordingly, genetic variants associated 

with an AD subtype may be more predictive for that subtype. 

In order to further characterize the comorbidity of alcohol-related phenotypes, and 

to assess risk prediction for variants contributing to comorbid phenotypes, we performed 

two sets of analyses. In the first part of the study, we assessed the extent to which 

genome-wide SNP effects overlapped between phenotypes that are correlated with DSM-

IV AD symptom count in order to assess the genetic overlap due to common variants 

between correlated phenotypes. We determined the proportion of variance accounted for 

in traits that are correlated with AD symptom count by a genome-wide genetic sum score 

estimated in the Collaborative Study on the Genetics of Alcoholism (COGA) GWAS 

sample using the genome-wide complex trait analysis (GCTA) tool (Yang et al., 2011).  

In the second part of this study, we used the COGA and the Study of Addiction: 

Genes and Addiction (SAGE) GWAS samples to capture genetic effects on subtypes of 

alcohol dependence in order to predict risk in AD subtypes in independent sample 

subsets. We combined the COGA and SAGE GWAS samples and then split the 

combined sample randomly in half. One half of the combined sample was used as a 

discovery sample and the other half a validation sample. We then performed GWAS 

analyses in the discovery sample separately for an externalizing and an internalizing 

subtype of alcohol dependence. The prior studies described in Chapters 4 and 5 showed 

that effect sizes of common SNPs for AD are individually small and that current studies 

have been underpowered to detect these small effect sizes at genome-wide significance 

thresholds. Selecting SNPs in aggregate across the genome and at more liberal p-value 

thresholds would include a greater proportion of true loci that could in aggregate account 
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for a significant, albeit small, proportion of the variance in AD, despite noise from null 

loci (Evans et al., 2009; Purcell et al., 2009). Therefore, in this study, subtypes of AD 

were assessed using varying significance levels in GWAS analyses, particularly as the 

sample size was reduced with the selection of subtypes, though power to detect loci could 

potentially increase with more homogeneous phenotypes. Variants meeting these 

thresholds were then assessed for discriminatory accuracy for AD subtypes.  

 

Materials and methods 

Sample selection  
 
In the first part of the study, we performed all analyses in the COGA GWAS EA sample. 

In the second part of the study, we combined the COGA and SAGE GWAS samples, 

after removing overlap between the two samples, and further categorized the sample into 

case-control status for an internalizing subtype and an externalizing subtype of alcohol 

dependence. We subsequently split the sample in half so that each half contained 50% of 

cases and 50% of controls for the externalizing and internalizing phenotypes. In order to 

reduce heterogeneity, the European American portion of the combined sample was used 

in our analyses.  

 The internalizing subtype was defined as meeting DSM-IV criteria for alcohol 

dependence and DSM-IV criteria for a major depressive episode. We included both the 

“dirty” (depressive episode experienced with drugs and/or alcohol) and “clean” diagnosis 

(not under the influence of drugs or alcohol) for a major depressive episode, but removed 

individuals who met criteria for a major depressive episode due to bereavement. Table 
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6.1 summarizes the number of individuals who met criteria for the comorbid internalizing 

phenotype in each study.  

The externalizing phenotype was defined by AD with illicit drug dependence 

and/or with conduct disorder. Controls were selected to have no illicit drug dependence, 

conduct disorder, or alcohol dependence. Individuals who had nicotine dependence were 

also removed from the control group, as nicotine dependence may still encompass some 

degree of shared genetic risk with an externalizing phenotype. Table 6.2 summarizes the 

number of individuals who met criteria for the comorbid externalizing phenotype in each 

study. 

 

Table 6.1 Internalizing subtype sample size by study 
 
 

   COGA    COGEND  FSCD  Total 
Control (no AD or MDD)  461  671  202  1334 
Case (AD + MDD)  379  97  139  615 

Total  840  768  341  1949 
AD = alcohol dependence; MDD = major depressive disorder 

 
 
 
 

Table 6.2 Externalizing subtype sample size by study 
 
 

   COGA    COGEND  FSCD  Total 
Control (no ND, CD, or DD)  518  750  234  1502 
Case (AD + CD or DD)  545  136  251  932 

Total  1063  886  485  2434 
AD = alcohol dependence; ND = nicotine dependence; CD = conduct disorder; DD = 
illicit drug dependence 
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Data analysis 
 
 
GCTA correlated phenotypes analyses 

The GCTA tool developed by Yang et al. (2011) was used to estimate the 

phenotypic variance explained by autosomal SNPs using the restricted maximum 

likelihood (REML) method for alcohol dependence symptom count in the COGA GWAS 

EA sample. The GCTA tool, described in detail in Chapter 5, uses a mixed linear model, 

with covariates treated as fixed effects and common SNPs genotyped on the GWAS array 

estimated as random effects. The phenotypic variance in alcohol dependence symptom 

count attributed to common SNPs was calculated based on a genetic relationship matrix 

across all individuals in the GWAS sample after pruning the genetic relationship matrix 

at a cut-off of 0.025 in order to remove potential shared environmental and latent genetic 

factors in more closely related individuals that could account for additional proportions of 

the variance beyond the genotyped SNPs. In prior analyses, we used the GCTA tool to 

estimate the proportion of variance in DSM-IV alcohol dependence symptom count 

explained by common SNPs in European American subset of the COGA GWAS sample. 

The following covariates were included as fixed effects in the mixed linear model: age, 

sex, 20 eigenvectors, and year of birth. Age, sex and year of birth were included as 

covariates to account for differences in drinking patterns between cohorts and sex, and to 

control for possible increasing lifetime alcohol dependence symptom count endorsement 

with increasing age.   
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Here, we used the best linear unbiased prediction (BLUP) solutions for individual 

SNP effects estimated in the COGA GWAS sample to create genetic sum scores 

weighted by the SNP effects within the COGA GWAS sample. The GCTA genetic sum 

scores were then assessed for association with AD symptom count and the following 

correlated phenotypes within the COGA GWAS sample: the maximum number of drinks 

in 24 hours that the study participant reported consuming, antisocial personality disorder 

symptom count, marijuana dependence symptom count, conduct disorder symptom count, 

cocaine dependence symptom count, opioid dependence symptom count, other drug 

dependence symptom count, and number of depressive symptoms, all measured by the 

DSM IV (American Psychiatric Association, 2000), and the Fagerstrom Test for Nicotine 

Dependence (FTND) score.  

 We also assessed two additional phenotypes to use as controls that are 

hypothesized not to have shared genetic variance with alcohol dependence – one that was 

correlated with alcohol dependence symptom count and one that was not. For the trait 

that had a correlation with AD symptom count, height was assessed. For the uncorrelated 

trait, a random, normally distributed quantitative phenotype was simulated in the COGA 

dataset. We compared the results of these two phenotypes with those of the psychiatric 

and substance use phenotypes. 

 A linear model was used to assess association of GCTA genetic sum scores in 

correlated phenotypes using R version 2.12.2 (R Core Development Team, 2011). Linear 

models included sex, age at interview, study site, and year of birth as covariates. 

 

AD subtypes risk prediction analyses 
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We created genetic sum scores based on SNPs that met p-value thresholds from p < 

0.0001 to p < 0.50 in the discovery sample and then assessed for prediction in the 

validation sample, separately for the internalizing and externalizing phenotypes. 

Association analysis was performed in the discovery sample using logistic regression 

with covariates for sex and the COGA, FSCD and COGEND study site variables in 

PLINK v1.07 (Purcell et al., 2007). 

 Prior to association, SNPs were pre-pruned based on an r2 threshold of 0.50 using 

an LD-based pruning function in PLINK version 1.07. This method calculated pairwise 

genotypic correlations for the list of SNPs. One of each pair of SNPs with correlations 

greater than an r2 of 0.50 was removed. LD calculations for SNP pruning were performed 

in the combined COGA and SAGE GWAS sample, sans overlap. Pruning resulted in 

385,060 SNPs kept for analyses. 

  

Genetic sum scores and ROC curve analyses 

Because both the COGA and SAGE GWAS samples had the same SNPs genotyped, and 

were confirmed to share the direction of the genotyped strand, GWAS results were 

matched directly by allele. Genetic sum scores were created for autosomal SNPs. Scores 

of total allele count were weighted by the natural log of the odds ratio for each reference 

minor allele, and then divided by the number of non-missing genotypes for each 

individual using PLINK version 1.07: 

Genetic sum score  = 
[!!× !"(!"!)]

!
[!!× !"(!"!)]

!
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where 𝑥!𝑥! is the number of reference alleles at the ith SNP, OR is the 

corresponding odds ratio, and N is the number of non-missing genotypes for each 

individual. 

 

Discriminatory accuracy of genetic sum scores was measured using ROC curve analysis 

in the caTools package in R version 2.12.2 (Tuszynski, 2011; R Core Development 

Team, 2011). The p-values associated with the AUCs for these sum scores were 

calculated based on the Wilcoxon rank-sum test using R version 2.12.2.  

 

 

Results 

 
Assessment of correlated phenotypes in the COGA GWAS sample 

GCTA genetics sum scores created within COGA showed significant variance accounted 

for in correlated phenotypes of GCTA genetic sum scores created based on AD symptom 

count (Table 6.3). The amount of variance accounted for by the GCTA genetic sum score 

was not directly proportional to the correlation between alcohol dependence symptom 

count and the second phenotype. For example, number of depressive symptoms had a 

lower correlation with AD symptom count than conduct disorder symptom count, but the 

GCTA genetic sum score derived from AD symptom count accounted for more of the 

variance in number of depressive symptoms than in conduct disorder symptom count. 

Furthermore, opioid dependence symptom count was less correlated with AD symptom 

count than height, but the GCTA genetic sum score accounted for a significant proportion 
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of the variance in opioid dependence symptom count, compared with no significant 

proportion of the variance in height. The GCTA genetic sum score did not account for a 

significant proportion of the variance in the random continuous phenotype. 

 

Table 6.3 Summary of variance accounted for by GCTA genetic sum score in COGA 
 

Phenotype 

Correlation 
with AD Sx 
Count * 

Proportion of 
variance 
accounted for 
by COGA 
aggregate 
genetic sum 
score  p-value 

AD Symptom Count 1* 67.72% p < 2e-16 
Maximum number of drinks in 24 hours 0.694* 24.07% p < 2e-16 
Antisocial Personality Disorder Symptom Count 0.668* 19.11% p < 2e-16 
Marijuana dependence symptom count 0.485* 10.79% p < 2e-16 
Conduct Disorder Symptom Count 0.476* 7.50% p < 2e-16 
Cocaine dependence symptom count 0.466* 10.88% p < 2e-16 
Other drug dependence symptom count 0.437* 12.01% p < 2e-16 
FTND Score 0.387* 11.21% p < 2e-16 
Number of depressive symptoms 0.377* 13.62% p < 2e-16 
Height 0.294* 0.10% p = 0.10 
Opioid dependence symptom count 0.291* 6.30% p < 2e-16 
Random, normally-distributed quantitative 
pheno 

0.006 (p = 
0.823) 3.88 x 10-5 p = 0.83 

 

 

Assessment of comorbid phenotypes in the COGA and SAGE GWAS sample 

Table 6.4 summarizes the resulting AUCs for genetic sum scores created based on SNPs 

at each p-value for the comorbid subtypes. AUC estimates showed increasing AUCs for 

genetic sum scores created based on SNPs meeting increasingly liberal p-value thresholds 

for the externalizing phenotype. AUC estimates for the internalizing phenotype were not 

significant and did not show a consistent pattern across p-value threshold cut-offs.  
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Table 6.4 Summary of AUC estimates for AD subtypes 
 
 
 

P-value threshold  Binary AD  Externalizing 
AD Subtype 

P-value 
for AUC 

Internalizing 
AD Subtype 

P-value 
for AUC 

P-value < 0.50 0.565 0.5610 5.86E-04 0.5192 0.3393 
P-value < 0.40 0.565 0.5599 7.28E-04 0.5221 0.2709 
P-value < 0.30 0.564 0.5629 3.89E-04 0.5232 0.2468 
P-value < 0.20 0.564 0.5628 3.97E-04 0.5229 0.2540 
P-value < 0.10 0.562 0.5598 7.39E-04 0.5260 0.1950 
P-value < 0.05 0.559 0.5465 0.0088 0.5337 0.0929 
P-value < 0.01 0.549 0.5238 0.1793 0.5274 0.1716 
P-value < 0.001 0.528 0.5063 0.7223 0.5340 0.0901 
P-value < 0.0001 0.517 0.5060 0.7331 0.5066 0.7432 

Externalizing AD Subtype = alcohol dependence that is comorbid with drug dependence 
or conduct disorder; Internalizing AD Subtype = alcohol dependence that is comorbid 
with major depressive disorder.  

 

 

Discussion 

 
This study aimed to evaluate the clinical validity of genetic variants that have been 

associated with alcohol dependence subtypes by exploring the aggregate effect of 

associated SNPs on risk prediction for alcohol dependence subtypes. Assessing risk 

prediction for a diagnosis of alcohol dependence has shown limited predictive ability 

using candidate gene information and GWAS results for AD. In this study, we first 

assessed the underlying genetic overlap between correlated phenotypes with DSM-IV 

alcohol dependence symptom count. We then assessed risk for AD subtypes, with the 

idea that risk prediction for a disorder may improve if specific predictors are identified to 

be more informative for a subset of individuals. 
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In order to further examine the genetic overlap between traits that have been 

suggested to have shared genetic variance with AD, we assessed whether we could 

quantify this genetic correlation using aggregated effects of common SNPs across the 

genome. In this part of the study, the GCTA genetic sum score created based on AD 

symptom count accounted for a significant proportion of the phenotypic variance in 

multiple correlated phenotypes thought to be etiologically related to AD. As expected, the 

GCTA genetic sum score accounted for a significant and substantial proportion of the 

variance in AD symptom count (67.72%), though not all of the variance. One important 

limitation to assessing genetic risk within the same sample in which the genetic sum 

score weights were estimated is that results would be largely inflated; independent 

samples are necessary for replication. A randomly simulated uncorrelated phenotype was 

created and found to be associated with the GCTA genetic sum score, which suggests that 

the sum score is not explaining risk indiscriminately for phenotypes within the discovery 

sample. In order to control for inflation, model was also run on height so that we could 

determine whether the GCTA genetic sum score accounted for variance in a correlated 

phenotype simply because its correlation with AD symptom count rendered it a proxy for 

AD symptom count rather than because there exists shared etiology between the two 

phenotypes. Height is not thought to have shared etiology with AD, but is correlated with 

AD symptom count. Its correlation with AD symptoms is driven by sex, for which there 

is a higher prevalence of AD among males compared with females (Hasin et al., 2007). 

There is no reported evidence of common genetic factors contributing to both sex 

determination and alcohol dependence and genetic contributions to AD have been 

estimated to be the same in males and females (Young-Wolff et al., 2012). Results 
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showed that the AD symptom count-derived GCTA genetic sum score did not account for 

a significant proportion of variance in height (r2 = 0.10%, p = 0.10). This supports the 

notion that significant association of the GCTA genetic sum score with correlated 

phenotypes may mean that common polygenic variation contributes to shared etiology 

between the two phenotypes.  

Results showed that phenotypic correlation did not directly correspond with 

polygenic sharing. This provides possible insight into the extent to which polygenic 

variation is shared between AD symptoms and correlated disorders. Although several 

phenotypes had similar correlations, the proportion of variance accounted for by the 

GCTA genetic sum score was not the same. For example, conduct disorder symptom 

count, had a higher phenotypic correlation with AD symptom count compared with 

number of depressive symptoms, but the GCTA genetic sum score derived from AD 

symptom count accounted for more of the variance in number of depressive symptoms 

compared with conduct disorder symptom count. This suggests that a greater proportion 

of polygenic risk may be shared between major depressive disorder symptom count and 

AD symptom count than between conduct disorder symptom count and AD.  

Risk prediction assessment of an externalizing AD subtype showed significant 

AUCs that increased with genetic sum scores created based on SNPs meeting less 

stringent p-value thresholds. Results for the internalizing phenotype, however, did not 

show a consistent significant pattern of AUCs across p-value threshold cut-offs. The 

reason could be that the COGA-SAGE combined GWAS sample size was greatly 

reduced in the analyses. Selecting only individuals meeting the subtype-defined 

phenotypes reduced the sample, and splitting the samples into discovery and validation 
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sets further reduced the sample sizes. Although a more narrowly defined phenotype could 

confer increased power for a genetic association study, a reduction in sample size could 

result in a corresponding reduction in power.  

The results of this study support a shared genetic component to alcohol-related 

phenotypic correlations that are consistent with twin and family studies. The substantial 

proportion of variance accounted for by AD symptom count-derived scores in the 

correlated phenotypes suggests that a proportion of the shared genetic variance is due to 

aggregated genome-wide common polygenic variance of small individual effect. Risk 

prediction for AD subtypes resulted in similar results to an AD binary diagnosis, with 

non-significant results for MDD, likely due to limited power. Assessment in larger 

samples may help uncover variants that are informative for predicting and possibly 

diagnosing subtypes of AD.    
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Chapter 7: Conclusions 

 
 
 
A greater understanding of the biology of alcohol dependence and its interplay with the 

environment is key to the advent of better treatment, prediction, and prevention of 

alcohol dependence. Advances in gene identification are now yielding replicable 

susceptibility loci for many complex traits, including alcohol dependence. However, each 

accounts for only a small proportion of the phenotypic variance of a trait. These studies 

assessed the predictive ability of currently known associated genetic variants, new 

aggregate measures to capture genetic information across the genome, and environmental 

factors associated with alcohol dependence phenotypes, with the aim of providing a 

clinical interpretation of the current body of knowledge of factors contributing to risk for 

alcohol dependence.  

Based on data simulation results, there is potential for alcohol dependence risk 

prediction; using only information on genetic contributions to alcohol dependence, it is 

possible to have discriminatory accuracy close to 80%. A risk prediction algorithm based 

on genetic information alone is not expected to reach an AUC of 100% because 

environment also plays a substantial role in risk for alcohol dependence. Adding the 

effects of environmental risk factors show that there is the potential for this AUC to 

increase to 0.95. Results demonstrate that as more causative loci are uncovered, and as 

environmental factors for alcohol dependence are found, then genetic susceptibility 
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testing and environmental risk prediction for alcohol dependence may have high clinical 

validity.   

The series of studies reported here showed that risk prediction for alcohol 

dependence is currently limited. Genetic sum scores based on candidate gene SNPs did 

not have significant predictive value as assessed by receiver operating characteristic 

curve analyses. Aggregate genetic sum scores including information on more variants 

across the genome did, however, have significant discriminatory accuracy for predicting 

alcohol dependence. This was particularly true for variants that met varying p-value 

thresholds that were less stringent – a subsequent genetic sum score based on these 

nominally associated SNPs had a higher AUC than SNPs meeting more stringent 

thresholds. We found that a similar pattern was observed for repeated subsampling cross-

validation procedures. We also found that results were similar for alcohol dependence 

internalizing and externalizing subtypes, as well as alcohol dependence symptom count, 

though our sample size for the internalizing subtype may have been too small to detect a 

significant effect. We also assessed the predictive ability of individual effects estimated 

based on the best linear unbiased prediction (BLUP) solutions of SNP effects using 

restricted maximum likelihood to estimate the phenotypic variance accounted for AD 

symptom count using the GCTA method developed by Yang et al. (2011). Scores based 

on markers across the genome accounted for a significant, but small proportion of the 

variance in alcohol dependence symptom count. A polygenic theory of etiology exists for 

many disorders of complex, multifactorial etiology (Fisher 1918). These results provide 

evidence for a polygenic contribution to alcohol dependence.  
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One reason that candidate gene sum scores associated in different populations did 

not in aggregate replicate in the COGA and SAGE GWAS samples may be due to 

phenotypic and genetic heterogeneity across the samples. In these analyses, several of the 

candidate gene variants had an opposite direction of effect across the candidate gene 

family-based association sample and the GWAS samples. Population differences between 

the high-density COGA sample and the GWAS samples could account for differences in 

direction of effect. According to Zuo et al., two different populations with distinct 

structures could share causal variants, but the variants in LD with these causal variants, 

which are the ones detected in genetic association studies, could be different across 

distinct populations (Zuo et al., 2012). To address this issue, they suggested that focus be 

placed on identifying risk regions, rather than individual variants, as these individual risk 

markers could be different in distinct populations, but be tagging the same causal 

variants. A next step would be to investigate prediction using regions with subsets of 

variants rather than replicating all candidate gene variants, as different variants from 

different regions may have different directions of effect and varying discriminatory 

accuracy for specific populations.  

In comparison with other risk prediction models, the AUCs of genetic sum scores 

are similar to AUCs of some clinical prediction models, showing that despite low clinical 

validity, genetic information for AD is in some circumstances comparative to existing 

clinical risk models for complex diseases. For example, the Gail model, or the Breast 

Cancer Risk Assessment Tool, is a commonly used tool to estimate 5-year and lifetime 

risk for invasive breast cancer and to help determine whether or not chemopreventative 

therapy is warranted. It assesses risk factors such as age, race, family history, personal 
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reproductive history including age at menarche and age at first live-born, and medical 

history such as atypical hyperplasia on biopsy and number of biopsies performed. A Gail 

model five-year absolute risk estimate of breast cancer of 1.67% is used as the cut-off in 

FDA guidelines for use of selective estrogen receptor modulators such as tamoxifen or 

raloxifen in risk reduction for breast cancer. The model has been validated at the 

population level, by comparing the expected (E) number of women who develop breast 

cancer based on the model with the observed number of women in the population who 

develop breast cancer (O). The calibration performance of the risk tool, or E/O ratio, has 

been found to be >93% in U.S. women (Spiegelman et al., 1994; Rockhill et al., 2001; 

Bondy et al., 1994; Costantino et al., 1999). Evaluation of clinical validity at the 

individual level using ROC curve analyses, however, showed that this model has poor 

classifier ability, with an AUC of 0.557 - 0.60 (Gail, 2008; Mealiffe et al., 2010; 

Wacholder et al., 2010; Rockhill et al., 2001; Anothaisintawee et al., 2012). Despite the 

low AUC, the Gail model is used as a screening tool in conjunction with personalized 

risk-benefits analysis of the clinical utility of chemopreventative therapy, and has been 

found to be particularly useful for younger women with increased risk based on the Gail 

model (Gail et al., 1999). Large prospective studies, such as the Framingham Heart 

Study, have developed extensive clinical risk algorithms, such as the Framingham Risk 

Score, which uses clinical risk factors including age, sex, LDL cholesterol, HDL 

cholesterol, total cholesterol, dyslipidemia, blood pressure, treatment for hypertension, 

and smoking to predict risk for cardiovascular disease. The Framingham Risk Score has 

been found to have AUCs of 0.72 – 0.86 for predicting cardiovascular disease mortality 

(Siontis et al., 2012). The Cambridge risk score for predicting risk for type II diabetes 
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includes family history, age, sex, drug treatment, smoking status, and body mass index 

and has an AUC of 0.78 for classifying cases and controls for type II diabetes (Talmud et 

al., 2010). Once more risk factors are found for AD, similar large, prospective 

population-based studies will be necessary for validation of risk prediction algorithms for 

alcohol-related phenotypes. 

Our findings stress that despite interest in genetic testing, and the availability of 

testing through direct to consumer (DTC) avenues, genetic testing for AD is not yet ready 

to be applied in a clinical setting. Without additional studies of clinical utility and 

validation of risk models for AD, the low clinical validity of genetic variants for AD 

connotes limited predictive value for risk assessment and decision-making based on 

information about specific genetic variants alone. Family history is shown here to be a 

better predictor of alcohol dependence than information from SNPs in aggregate. Despite 

its higher AUC, family history still does not have a discriminative accuracy that is close 

to the typical target AUC of 0.80 for screening tools. Therefore, the prediction of alcohol 

dependence has room to improve if it is to be used as a screening tool with high clinical 

validity. Expanded family history information across multiple relationships may have 

better predictive ability. In our analyses, an ordinal family history variable had a 

nominally higher AUC compared with a binary family history variable based on the same 

criteria for parental history of AD. Family history containing information about relatives 

other than mother and father of a proband had a higher AUC than information about 

parental AD history only. The cost of taking a sufficient family history must also be 

weighed against the cost of having a genetic test, which should in turn be weighed against 

the use of environmental factors, as well as a combination of all three predictors – 
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specific genetic variants, environmental factors, and family history information. As 

sequencing costs decrease, future cost-benefit analyses may show that for some 

conditions with well-validated genetic information, the price of analyzing a panel of 

SNPs from sequencing data may be lower than taking a detailed family and/or clinical 

history to obtain the same risk estimates. Perhaps an even more effective way to predict 

risk would be to combine family history information with genetic information in order to 

uncover the degree of penetrance for a specific set of alleles, and to find out which 

genetic markers are most informative for a particular family based on its history 

(Ruderfer et al., 2010).   

Continued studies on the clinical validity of genetic risk factors in cross-sectional 

and retrospective studies may inform prospective clinical studies. Developmental studies 

assessing the discriminatory accuracy of phenotypes across the lifespan can be assessed. 

Since the maximum AUC of a disorder is dependent on its prevalence, and prevalence of 

AD is age-dependent, the ability of genetic marker to discriminate affection status would 

vary with age. Further research could show that environmental prediction and 

intervention may be most helpful in particular subgroups. Genetic information may allow 

for identification of subgroups that will respond better to prevention and treatment 

measures, such as targeting alcohol metabolism with withdrawal phenotypes. Finally, 

with knowledge of genetic contributions to AD, studies should help determine the best 

way in which to communicate risk for a complex disorder such as AD in a clinically 

meaningful way that minimizes fatalism and maximizes healthy behavior and 

psychosocial adaptation.  
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Future extensions of this work would include the incorporation of gene-gene and 

gene-environment interactions to create an additively coded composite risk score 

weighted by the effect size associated with the interactions in both simulated data and 

real data. Many of the “environmental” variables included in these analyses have been 

shown to moderate genetic contributions to AD, and therefore augment genetic influences 

under some conditions and mask them under other conditions. Consequently, these 

interactions could affect how informative genetic variants may be for a given individual, 

and may depend on existing background environmental risk for that individual. Data 

mining techniques such as tree-based regression and classification are approaches 

designed for incorporating all of the complex predictor interactions and main effects to 

predict risk for a disorder. Several data mining techniques have been applied to GWAS 

data. Pirooznia et al. (2012) used Bayesian networks, support vector machine, random 

forest, radial basis function network, and logistic regression methods to investigate 

predictors of bipolar disorder compared with the polygenic scores created based on 

varying p-value thresholds. They found that the AUCs of data mining approaches did not 

reach the AUC of the polygenic scoring approach, with the exception of results from 

Bayesian networks, which produced an AUC of 0.550 compared with the AUC of 0.549 

for a polygenic score (Pirooznia et al., 2012). Another recent study by Wong et al. (2012) 

used the advance recursive partition approach (ARPA), a classificatory multidimensional 

tree technique, to assess autosomal non-synonymous SNPs in 188 genes, comorbid 

conditions, and covariates to predict major depressive disorder (MDD). They found a tree 

structure that replicated in an independent sample and had a predictive accuracy of AUC 

= 0.63 for MDD (Wong et al., 2012). Unlike traditional gene-finding approaches using 
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association analyses, data mining approaches focus specifically on optimizing risk 

prediction by modeling multiple correlations and interactions between variables that 

predict risk significantly for an outcome of interest. Using an a priori set of expanded, 

less correlated genetic markers to assess for a set of predictors in a data mining 

framework that incorporates interactions between markers may improve risk prediction 

for AD. Furthermore, including higher order interactions between genetic and 

environmental variables could improve prediction using data mining, particularly in light 

of the suggested importance of gene-environment interactions in risk for AD.   

In summary, these studies aimed to find ways of utilizing the growing body of 

knowledge in the development of alcohol dependence to find clinically meaningful 

profiles of risk, and to place risk factors for AD in a clinical context. To date, the current 

status of psychiatric disorders and other complex diseases have limited genetic prediction 

options. Although variants from association studies are currently not sufficient to act as 

predictors of disease status, data simulations show that by using larger studies, markers 

that serve as good classifiers may be found. Growing interest in genetic counseling and 

testing to determine and manage risk for complex phenotypes calls for continuous 

evaluation of clinical validity and utility that should be concomitant with focused 

investigation of the genetic influences on these traits. The hope is that by combining a 

number of risk variants, more of the variance explained by genetic factors can be 

accounted for even though the variance explained independently by each variant is small 

(Wray et al., 2008). The increasing number of gene-identification studies, coupled with 

decreasing costs of high-throughput genotyping and whole genome sequencing, may 

allow for better detection of markers covering a range of frequencies and effects on 
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alcohol dependence. By continuing to find biomarkers for disease risk and progression, 

we may eventually be able to develop models for better risk prediction, diagnosis, 

prognosis, treatment, and prevention. 
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